(本題滿分12分)
已知數(shù)列的前 n項(xiàng)和為,滿足,且.
(Ⅰ)求,;
(Ⅱ)若,求證:數(shù)列是等比數(shù)列。
(Ⅲ)若 , 求數(shù)列的前n項(xiàng)和。
(1) ,(2)證明數(shù)列是等比數(shù)列,主要是證明從第二項(xiàng)起每一項(xiàng)與前面 項(xiàng)的比值為定值,進(jìn)而得到證明。
(3)…
解析試題分析:解(Ⅰ),
(Ⅱ)由 ①
得時(shí), ②
①-②得
整理得
即 ()
又∵
∴數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列。
(Ⅲ)由(Ⅱ)得
則
∴…
考點(diǎn):數(shù)列的通項(xiàng)公式和求和的運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是對(duì)于數(shù)列的概念的理解和運(yùn)用,以及結(jié)合裂項(xiàng)法思想,將根據(jù)通項(xiàng)公式的特點(diǎn)來求和,得到結(jié)論,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)各項(xiàng)均為正實(shí)數(shù)的數(shù)列的前項(xiàng)和為,且滿足().
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的通項(xiàng)公式為(),若,,()成等差數(shù)列,求和的值;
(Ⅲ)證明:存在無窮多個(gè)三邊成等比數(shù)列且互不相似的三角形,其三邊長為數(shù)列中的三項(xiàng),,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知數(shù)列滿足.
(Ⅰ)證明數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
設(shè)數(shù)列{}的前n項(xiàng)和為,且=1,,數(shù)列{}滿足,點(diǎn)P(,)在直線x―y+2=0上,.
(1)求數(shù)列{ },{}的通項(xiàng)公式;
(2)設(shè),求數(shù)列{}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
在數(shù)列{an}中,a1=1,an=n2[1+++…+] (n≥2,n∈N)
(1)當(dāng)n≥2時(shí),求證:=
(2)求證:(1+)(1+)…(1+)<4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分) 正項(xiàng)數(shù)列{an}滿足a1=2,點(diǎn)An()在雙曲線y2-x2=1上,點(diǎn)()在直線y=-x+1上,其中Tn是數(shù)列{bn}的前n項(xiàng)和。
①求數(shù)列{an}、{bn}的通項(xiàng)公式;
②設(shè)Cn=anbn,證明 Cn+1<Cn
③若m-7anbn>0恒成立,求正整數(shù)m的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
正項(xiàng)數(shù)列的首項(xiàng)為,時(shí),,數(shù)列對(duì)任意均有
(1)若,求證:數(shù)列是等差數(shù)列;
(2)已知,數(shù)列滿足,記數(shù)列的前項(xiàng)和為,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知是等差數(shù)列,其中.
(1)求通項(xiàng)公式;
(2)數(shù)列從哪一項(xiàng)開始小于0;
(3)求值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com