【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且 .
(1)求角A的值;
(2)若∠B= ,BC邊上中線AM= ,求△ABC的面積.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓具有性質(zhì):若M,N是橢圓C: =1(a>b>0且a,b為常數(shù))上關于y軸對稱的兩點,P是橢圓上的左頂點,且直線PM,PN的斜率都存在(記為kPM , kPN),則kPMkPN= .類比上述性質(zhì),可以得到雙曲線的一個性質(zhì),并根據(jù)這個性質(zhì)得:若M,N是雙曲線C: =1(a>0,b>0)上關于y軸對稱的兩點,P是雙曲線C的左頂點,直線PM,PN的斜率都存在(記為kPM , kPN),雙曲線的離心率e= ,則kPMkPN等于 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1. (Ⅰ)若3是關于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(Ⅱ)當0<a<1且t=1時,解不等式f(x)≤g(x);
(Ⅲ)若函數(shù)F(x)=af(x)+tx2﹣2t+1在區(qū)間(﹣1,3]上有零點,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列向量組中能作為表示它們所在平面內(nèi)所有向量的基底的是( )
A. =(0,0), =(1,﹣2)
B. =(﹣1,2), =(2,﹣4)
C. =(3,5), =(6,10)
D. =(2,﹣3), =(6,9)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于平面向量 , , ,下列結(jié)論正確的個數(shù)為( ) ①若 = ,則 = ;
②若 =(1,k), =(﹣2,6), ∥ ,則k=﹣3;
③非零向量 和 滿足| |=| |=| ﹣ |,則 與 + 的夾角為30°;
④已知向量 ,且 與 的夾角為銳角,則實數(shù)λ的取值范圍是 .
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在下列函數(shù)中,最小值為2的是( )
A.y=2x+2﹣x
B.y=sinx+ (0<x< )
C.y=x+
D.y=log3x+ (1<x<3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 滿足Sn= an﹣n(t>0且t≠1,n∈N*)
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式(用t,n表示)
(2)當t=2時,令cn= ,證明 ≤c1+c2+c3+…+cn<1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三人投籃的水平都比較穩(wěn)定,若三人各自獨立地進行一次投籃測試,則甲投中而乙不投中的概率為 ,乙投中而丙不投中的概率為 ,甲、丙兩人都投中的概率為 .
(1)分別求甲、乙、丙三人各自投籃一次投中的概率;
(2)若丙連續(xù)投籃5次,求恰有2次投中的概率;
(3)若丙連續(xù)投籃3次,每次投籃,投中得2分,未投中得0分,在3次投籃中,若有2次連續(xù)投中,而另外1次未投中,則額外加1分;若3次全投中,則額外加3分,記ξ為丙連續(xù)投籃3次后的總得分,求ξ的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+a.
(1)當a=2時,求不等式f(x)≤6的解集;
(2)設函數(shù)g(x)=|2x﹣1|,當x∈R時,f(x)+g(x)≥3,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com