精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在直三棱柱中, , , 中點, 交于點

Ⅰ)求證: 平面

Ⅱ)求證: 平面

Ⅲ)在線段上是否存在點,使得?請說明理由.

【答案】見解析見解析)當中點時,

【解析】試題分析:(Ⅰ)證明:連結OD,可證OD為△A1BC的中位線,可得OD∥A1C,即可判定A1C∥平面AB1D.(Ⅱ)在直三棱柱ABC-A1B1C1中,可證AC⊥平面AA1B1B,從而可得AC⊥A1B,又A1B⊥AB1,AC∩AB1=A,即可證明A1B⊥平面AB1C.(Ⅲ)取B1C中點E,連結DE,AE,可證DE⊥BC,AD⊥BC,從而證明BC⊥平面ADE,進而可證BC⊥AE,即可得解.

試題解析:

)連接,,四邊形為正方形.中點,又中點,的中位線,平面 ,

)由題知, ,, ,

在正方形中, ,

)存在,取中點,連接,

, 中點, ,

,中點時,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的公差不為零,a1=25,且a1 , a11 , a13成等比數列.
(1)求{an}的通項公式;
(2)求a1+a4+a7+…+a3n2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分13分)

已知橢圓的短軸長為,且與拋物線有共同的焦點,橢圓的左頂點為A,右頂點為,點是橢圓上位于軸上方的動點,直線,與直線分別交于兩點.

I)求橢圓的方程;

)求線段的長度的最小值;

)在線段的長度取得最小值時,橢圓上是否存在一點,使得的面積為,若存在求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式.
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某超市從現有甲、乙兩種酸奶的日銷售量(單位:箱)的1200個數據(數據均在區(qū)間內)中,按照5%的比例進行分層抽樣,統計結果按 , , , 分組,整理如下圖:

(Ⅰ)寫出頻率分布直方圖(圖乙)中的值;記所抽取樣本中甲種酸奶與乙種酸奶日銷售量的方差分別為, ,試比較的大。ㄖ恍鑼懗鼋Y論);

(Ⅱ)從甲種酸奶日銷售量在區(qū)間的數據樣本中抽取3個,記在內的數據個數為,求的分布列;

(Ⅲ)估計1200個日銷售量數據中,數據在區(qū)間中的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現對30名六年級學生進行了問卷調查得到如下列聯表:


常喝

不常喝

合計

肥胖


2


不肥胖


18


合計



30

已知在全部30人中隨機抽取1人,抽到肥胖的學生的概率為

1)請將上面的列表補充完整;

2)是否有99.5%的把握認為肥胖與常喝碳酸飲料有關?說明你的理由;

34名調查人員隨機分成兩組,每組2人,一組負責問卷調查,另一組負責數據處理,求工作人員甲分到負責收集數據組,工作人員乙分到負責數據處理組的概率.

參考數據:


0.15

0.10

0.05

0.025

0.010

0.005

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 分別為的中點.

)證明: 平面

)證明:平面平面

)當上的動點滿足什么條件時,使三棱錐的體積與四棱錐體積的比值為,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABCD為正方形,P為平面ABCD外一點,且PA⊥平面ABCD,則平面PAB與平面PBC,平面PAB與平面PAD的位置關系是(
A.平面PAB與平面PAD,PBC垂直
B.它們都分別相交且互相垂直
C.平面PAB與平面PAD垂直,與平面PBC相交但不垂直
D.平面PAB與平面PBC垂直,與平面PAD相交但不垂直

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中央電視臺為了解該衛(wèi)視《朗讀者》節(jié)目的收視情況,抽查東西兩部各個城市,得到觀看該節(jié)目的人數(單位:千人)如下莖葉圖所示其中一個數字被污損,

(1)求東部各城市觀看該節(jié)目觀眾平均人數超過西部各城市觀看該節(jié)目觀眾平均人數的概率.

(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對朗讀以及經典的閱讀學習積累的熱情,從中獲益匪淺,現從觀看節(jié)目的觀眾中隨機統計了位觀眾的周均閱讀學習經典知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示):

年齡

周均學習成語知識時間(小時)

由表中數據,試求線性回歸方程,并預測年齡為歲觀眾周均學習閱讀經典知識的時間.

查看答案和解析>>

同步練習冊答案