17.已知函數(shù)f(x)=x2+2x+alnx
(1)若曲線y=f(x)在x=1處切線的斜率為5,求實數(shù)a的值;
(2)當(dāng)t≥1時,不等式f(2t-1)-2f(t)≥-3恒成立,求實數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),計算f′(1)的值,求出a即可;
(2)由f(x)的解析式化簡不等式,分離參數(shù)a,根據(jù)函數(shù)的單調(diào)性求出函數(shù)的最小值即可得到a的范圍.

解答 解:(1)f′(x)=2x+2+$\frac{a}{x}$,
故f′(1)=4+a=5,解得:a=1;
(2)∵f(x)=x2+2x+alnx,
∴f(2t-1)≥2f(t)-3⇒2t2-4t+2≥2alnt-aln(2t-1)=aln $\frac{{t}^{2}}{2t-1}$.
當(dāng)t≥1時,t2≥2t-1,∴l(xiāng)n $\frac{{t}^{2}}{2t-1}$≥0.即t>1時,a≤$\frac{{2(t-1)}^{2}}{ln\frac{{t}^{2}}{2t-1}}$恒成立.
又易證ln(1+x)≤x在x>-1上恒成立,
∴l(xiāng)n $\frac{{t}^{2}}{2t-1}$=ln[1+$\frac{{(t-1)}^{2}}{2t-1}$]≤$\frac{{(t-1)}^{2}}{2t-1}$<(t-1)2在t>1上恒成立,
當(dāng)t=1時取等號,∴當(dāng)t≥1時,ln $\frac{{t}^{2}}{2t-1}$≤(t-1)2,
∴由上知a≤2.故實數(shù)a的取值范圍是(-∞,2].

點評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及函數(shù)恒成立時所取的條件.考查考生的運(yùn)算、推導(dǎo)、判斷能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)向量$\overrightarrow a=(x,2),\overrightarrow b=(-3,5)$,若$\overrightarrow a,\overrightarrow b$共線,則x=$-\frac{6}{5}$;若$\overrightarrow a⊥\overrightarrow b$,則x=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)的部分圖象如圖,則f(x)的解析式可能為( 。
A.f(x)=xsinxB.f(x)=xcosx-sinxC.f(x)=xcosxD.f(x)=xcosx+sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.以下判斷正確的序號是(2)(3)(4)
(1)函數(shù)y=f(x)為R上的可導(dǎo)函數(shù),則f′(x0)=0是x0為函數(shù)f(x)極值點的充要條件.
(2)$\int_0^4{(|x-1|+|x-3|)}dx$=10.
(3)已知函數(shù)f(x)=x3+x,對任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,則x的取值范圍為(-2,$\frac{2}{3}$).
(4)設(shè)f1(x)=cosx,定義fn+1(x)為fn(x)的導(dǎo)數(shù),即fn+1(x)=f′n(x)n∈N,若△ABC的內(nèi)角A滿足${f_1}(A)+{f_2}(A)+…+{f_{2014}}(A)=\frac{1}{3}$,則sin2A=$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在數(shù)列1,2,2,3,3,3,4,4,4,4,…中,第31項為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角α的終邊經(jīng)過點P(4,-3),那么cosα-sinα的值是( 。
A.$\frac{1}{5}$B.-$\frac{7}{5}$C.$-\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知一幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{π}{6}+\frac{1}{3}$B.$\frac{π}{12}+1$C.$\frac{π}{12}+\frac{1}{3}$D.$\frac{π}{4}+\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)x>0,由不等式x+$\frac{1}{x}$≥2,x+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$≥4,…,推廣到x+$\frac{a}{{x}^{n}}$≥n+1,則a=( 。
A.2nB.2nC.n2D.nn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題中正確的是(  )
A.命題“?x0∈R,sinx0>1”的否定是“?x∈R,sinx>1”
B.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”
C.在△ABC中,A>B是sinA>sinB的充分不必要條件
D.若p∧(¬q)為假,p∨(¬q)為真,則p,q同真或同假

查看答案和解析>>

同步練習(xí)冊答案