7.下列命題中正確的是( 。
A.命題“?x0∈R,sinx0>1”的否定是“?x∈R,sinx>1”
B.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”
C.在△ABC中,A>B是sinA>sinB的充分不必要條件
D.若p∧(¬q)為假,p∨(¬q)為真,則p,q同真或同假

分析 A.根據(jù)特稱命題的否定是全稱命題進(jìn)行判斷,
B.根據(jù)逆否命題的定義進(jìn)行判斷,
C.根據(jù)正弦定理結(jié)合充分條件和必要條件的定義進(jìn)行判斷,
D.根據(jù)復(fù)合命題真假關(guān)系進(jìn)行判斷.

解答 解:A.命題“?x0∈R,sinx0>1”的否定是“?x∈R,sinx≤1”,故A錯(cuò)誤,
B.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0且y≠0,則xy≠0”,故B錯(cuò)誤,
C.在△ABC中,A>B等價(jià)為a>b,由正弦定理得sinA>sinB,則在△ABC中,A>B是sinA>sinB的充要條件,故C錯(cuò)誤,
D.若p∧(¬q)為假,則p,¬q至少有一個(gè)為假命題,
若p∨(¬q)為真,則p,¬q至少有一個(gè)為真命題,
則p,¬q一個(gè)為真命題,一個(gè)為假命題,即p,q同真或同假,故D正確,
故選:D

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及含有量詞的命題的否定,四種命題,復(fù)合命題真假關(guān)系以及充分條件和必要條件的判斷,涉及的知識(shí)點(diǎn)較多,綜合性較強(qiáng),但難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x2+2x+alnx
(1)若曲線y=f(x)在x=1處切線的斜率為5,求實(shí)數(shù)a的值;
(2)當(dāng)t≥1時(shí),不等式f(2t-1)-2f(t)≥-3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知f(x)是定義在R上的奇函數(shù),滿足f(-$\frac{3}{2}$+x)=f($\frac{3}{2}$+x),當(dāng)x∈[0,$\frac{3}{2}$]時(shí),f(x)=ln(x2-x+1),則函數(shù)f(x)在區(qū)間[0,6]上的零點(diǎn)個(gè)數(shù)是( 。
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知等差數(shù)列{an}的a1=-20,公差為d,前n項(xiàng)和為Sn,則“3<d<5”是“Sn的最小值僅為S6”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,三棱柱ABC-A1B1Cl中,M,N分別為CC1,A1B1的中點(diǎn).CA⊥CB1,CA=CB1,BA=BC=BB1
(Ⅰ)求證:直線MN∥平面CAB1;
(Ⅱ)求證:直線BA1⊥平面CAB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知f(x)=$\left\{\begin{array}{l}{ln(1-x),x<0}\\{{x}^{2}-ax,x≥0}\end{array}\right.$,且g(x)=f(x)+$\frac{x}{2}$有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點(diǎn)分別為A1、A2,上、下頂點(diǎn)分別為B2、B1,四邊形A1B1A2B2的面積為4$\sqrt{3}$,且該四邊形內(nèi)切圓的方程為x2+y2=$\frac{12}{7}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l:y=kx+m(k,m均為常數(shù))與橢圓C相交于M,N兩個(gè)不同的點(diǎn)(M,N異于A1,A2),若以MN為直徑的圓過(guò)橢圓C的右頂點(diǎn)A2,試判斷直線l能否過(guò)定點(diǎn)?若能,求出該定點(diǎn)坐標(biāo);若不能,也請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$=(1,-1),|$\overrightarrow$|=1,且$\overrightarrow$⊥($\overrightarrow{a}$+$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=ln(1+x)-\frac{x}{{{{(1+x)}^a}}}$,實(shí)數(shù)a>0.
(Ⅰ)若a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x>0時(shí),不等式f(x)<0恒成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案