【題目】定義:如果函數(shù)在定義域內(nèi)給定區(qū)間上存在,滿足 ,則稱函數(shù)上的“平均值函數(shù)”,是它的均值點.

(1)是否是上的“平均值函數(shù)”,如果是請找出它的均值點;如果不是,請說明理由;

(2)現(xiàn)有函數(shù)上的平均值函數(shù),則求實數(shù)的取值范圍.

【答案】(1)它的均值點為;(2).

【解析】

(1)利用結(jié)合的解有且只有,從而可得結(jié)果;(2)函數(shù)上的平均值函數(shù),求得等價于關(guān)于的方程,內(nèi)有實數(shù)根,可得,討論的符號結(jié)合零點存在定理與二次函數(shù)的圖象即可得結(jié)果.

(1)又由于的解有且只有,所以上的“平均值函數(shù)”,且它的均值點為;

(2)因為函數(shù)上的平均值函數(shù),所以,即關(guān)于的方程內(nèi)有實數(shù)根,即內(nèi)有實數(shù)根,

,則

,即時,函數(shù)有一個零點,滿足條件;

,即時,方程根為,滿足條件;

,即時,要使得方程內(nèi)有實數(shù)根,則且函數(shù)的對稱軸在上,即,解得;

綜上:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為的正方形ADEF與梯形ABCD所在的平面互相垂直,其中ABCDABBC,DC=BC=AB=1,點M在線段EC上.

)證明:平面BDM平面ADEF;

)判斷點M的位置,使得三棱錐B﹣CDM的體積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生對其30位親屬的飲食習慣進行了一次調(diào)查,并用如圖所示的莖葉圖表示他們的飲食指數(shù)(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主).

(1)根據(jù)莖葉圖,幫助這位同學說明這30位親屬的飲食習慣.

(2)根據(jù)以上數(shù)據(jù)完成如下2×2列聯(lián)表.

(3)能否有99%的把握認為其親屬的飲食習慣與年齡有關(guān)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為常數(shù),函數(shù).

(1)當時,求關(guān)于的不等式的解集;

(2)當時,若函數(shù)上存在零點,求實數(shù)的取值范圍;

(3)當時,對于給定的,且,證明:關(guān)于的方程在區(qū)間內(nèi)有一個實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個對應(yīng)f不是從集合A到集合B的函數(shù)的是( )

A. A ,B={-6,-3,1},,f (1)=-3,;

B. AB={x|x≥-1},f (x)=2x+1;

C. AB={1,2,3},f (x)=2x-1;

D. A=Z,B={-1,1},n為奇數(shù)時,f (n)=-1,n為偶數(shù)時,f (n)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)=(﹣x2+ax﹣3)ex(a為實數(shù)).
(1)當a=4時,求函數(shù)y=g(x)在x=0處的切線方程;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)如果關(guān)于x的方程g(x)=2exf(x)在區(qū)間[ ,e]上有兩個不等實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點為P1 , P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,平面底面, ,點分別是的中點.

)求證: 平面;

)求證: 平面;

)在棱上求作一點,使得,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x),若a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“可構(gòu)造三角形函數(shù)”.已知函數(shù)f(x)=是“可構(gòu)造三角形函數(shù)”,則實數(shù)t的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案