受轎車(chē)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車(chē)的利潤(rùn)與該轎車(chē)首次出現(xiàn)故障的時(shí)間有關(guān).某轎車(chē)制造廠(chǎng)生產(chǎn)甲、乙兩種品牌轎車(chē),保修期均為2年.現(xiàn)從該廠(chǎng)已售出的兩種品牌轎車(chē)中各隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:

品牌


首次出現(xiàn)故
障時(shí)間x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轎車(chē)數(shù)量(輛)
2
3
45
5
45
每輛利潤(rùn)
(萬(wàn)元)
1
2
3
1.8
2.9
將頻率視為概率,解答下列問(wèn)題:
(1)從該廠(chǎng)生產(chǎn)的甲品牌轎車(chē)中隨機(jī)抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率.
(2)若該廠(chǎng)生產(chǎn)的轎車(chē)均能售出,記生產(chǎn)一輛甲品牌轎車(chē)的利潤(rùn)為X1,生產(chǎn)一輛乙品牌轎車(chē)的利潤(rùn)為X2,分別求X1,X2的分布列.
(3)該廠(chǎng)預(yù)計(jì)今后這兩種品牌轎車(chē)銷(xiāo)量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車(chē).若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的轎車(chē)?說(shuō)明理由.

(1)(2)X1的分布列為

X1
1
2
3
P



X2的分布列為
X2
1.8
2.9
P


(3)甲品牌轎車(chē)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評(píng)價(jià)該產(chǎn)品的等級(jí).若S≤4,則該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號(hào)
A1
A2
A3
A4
A5
質(zhì)量指標(biāo)(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
 
 
 
 
 
 
產(chǎn)品編號(hào)
A6
A7
A8
A9
A10
質(zhì)量指標(biāo)(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;
(2)在該樣本的一等品中,隨機(jī)抽取2件產(chǎn)品,
①用產(chǎn)品編號(hào)列出所有可能的結(jié)果;
②設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)A,B是治療同一種疾病的兩種藥,用若干試驗(yàn)組進(jìn)行對(duì)比試驗(yàn).每個(gè)試驗(yàn)組由4只小白鼠組成,其中2只服用A,另2只服用B,然后觀(guān)察療效.若在一個(gè)試驗(yàn)組中,服用A有效的小白鼠的只數(shù)比服用B有效的只數(shù)多,就稱(chēng)該試驗(yàn)組為甲類(lèi)組.設(shè)每只小白鼠服用A有效的概率為,服用B有效的概率為.
(1)求一個(gè)試驗(yàn)組為甲類(lèi)組的概率;
(2)觀(guān)察三個(gè)試驗(yàn)組,用X表示這三個(gè)試驗(yàn)組中甲類(lèi)組的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

假設(shè)某班級(jí)教室共有4扇窗戶(hù),在每天上午第三節(jié)課上課預(yù)備鈴聲響起時(shí),每扇窗戶(hù)或被敞開(kāi)或被關(guān)閉,且概率均為0.5.記此時(shí)教室里敞開(kāi)的窗戶(hù)個(gè)數(shù)為X.
(1)求X的分布列;
(2)若此時(shí)教室里有兩扇或兩扇以上的窗戶(hù)被關(guān)閉,班長(zhǎng)就會(huì)將關(guān)閉的窗戶(hù)全部敞開(kāi),否則維持原狀不變.記每天上午第三節(jié)課上課時(shí)該教室里敞開(kāi)的窗戶(hù)個(gè)數(shù)為Y,求Y的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在打靶訓(xùn)練中,某戰(zhàn)士射擊一次的成績(jī)?cè)?環(huán)(包括9環(huán))以上的概率是0.18,在8~9環(huán)(包括8環(huán))的概率是0.51,在7~8環(huán)(包括7環(huán))的概率是0.15,在6~7環(huán)(包括6環(huán))的概率是0.09.計(jì)算該戰(zhàn)士在打靶訓(xùn)練中射擊一次取得8環(huán)(包括8環(huán))以上成績(jī)的概率和該戰(zhàn)士打靶及格(及格指6環(huán)以上包括6環(huán))的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

市民李先生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)的.同一條道路去程與回程是否堵車(chē)相互獨(dú)立.假設(shè)李先生早上需要先開(kāi)車(chē)送小孩去丙地小學(xué),再返回經(jīng)甲地趕去乙地上班.假設(shè)道路AB,D上下班時(shí)間往返出現(xiàn)擁堵的概率都是,道路C,E上下班時(shí)間往返出現(xiàn)擁堵的概率都是,只要遇到擁堵上學(xué)和上班的都會(huì)遲到.

(1)求李先生的小孩按時(shí)到校的概率;
(2)李先生是否有七成把握能夠按時(shí)上班?
(3)設(shè)X表示李先生下班時(shí)從單位乙到達(dá)小學(xué)丙遇到擁堵的次數(shù),求X的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司研制出一種新型藥品,為測(cè)試該藥品的有效性,公司選定個(gè)藥品樣本分成三組,測(cè)試結(jié)果如下表:

分組



藥品有效



藥品無(wú)效



已知在全體樣本中隨機(jī)抽取個(gè),抽到組藥品有效的概率是
(1)現(xiàn)用分層抽樣的方法在全體樣本中抽取個(gè)測(cè)試結(jié)果,問(wèn)應(yīng)在組抽取樣本多少個(gè)? [來(lái)源:學(xué)優(yōu)]
(2)已知,,求該藥品通過(guò)測(cè)試的概率(說(shuō)明:若藥品有效的概率不小于%,則認(rèn)為測(cè)試通過(guò)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,,點(diǎn)的坐標(biāo)為.
(1)求當(dāng)時(shí),點(diǎn)滿(mǎn)足的概率;
(2)求當(dāng)時(shí),點(diǎn)滿(mǎn)足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

成都七中為綠化環(huán)境,移栽了銀杏樹(shù)2棵,梧桐樹(shù)3棵。它們移栽后的成活率分別為且每棵樹(shù)是否存活互不影響,求移栽的5棵樹(shù)中:
(1)銀杏樹(shù)都成活且梧桐樹(shù)成活2棵的概率;
(2)成活的棵樹(shù)的分布列與期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案