【題目】若平面區(qū)域 夾在兩條斜率為 的平行直線之間,則這兩平行直線間的距離的最小值為( )
A.
B.
C.
D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F(xiàn)1 , F2是雙曲線C: (a>0,b>0)的左、右焦點,過F1的直線l與C的左、右兩支分別交于A,B兩點.若△ABF2為等邊三角形,則雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB= ,BC=1,P為△ABC內(nèi)一點,∠BPC=90°.
(1)若PB= ,求PA;
(2)若∠APB=150°,求tan∠PBA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)開發(fā)一種新產(chǎn)品,現(xiàn)準備投入適當?shù)膹V告費,對產(chǎn)品進行促銷,在一年內(nèi),預(yù)計年銷量Q(萬件)與廣告費x(萬件)之間的函數(shù)關(guān)系為 ,已知生產(chǎn)此產(chǎn)品的年固定投入為3萬元,每年產(chǎn)1萬件此產(chǎn)品仍需要投入32萬元,若年銷售額為(32Q+3)150%+x50%,而當年產(chǎn)銷量相等.
(1)試將年利潤P(萬件)表示為年廣告費x(萬元)的函數(shù);
(2)當年廣告費投入多少萬元時,企業(yè)年利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過直線l1:2x﹣y﹣1=0與直線l2:x+2y﹣3=0的交點P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓C:(x﹣a)2+y2=8相交于P,Q兩點,且 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,且acosC,bcosB,ccosA成等差數(shù)列.
(1)求角B的大小;
(2)求2sin2A+cos(A﹣C)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com