(本題滿分12分)已知的極坐標(biāo)方程為,分別為在直角坐標(biāo)系中與 軸、軸的交點,曲線的參數(shù)方程為(為參數(shù),且),為的中點,求:過(為坐標(biāo)原點)的直線與曲線所圍成的封閉圖形的面積。
科目:高中數(shù)學(xué) 來源: 題型:解答題
直角坐標(biāo)系和極坐標(biāo)系的原點與極點重合,軸正半軸與極軸重合,單位長度相同,在直角坐標(biāo)系下,曲線C的參數(shù)方程為為參數(shù))。
(1)在極坐標(biāo)系下,曲線C與射線和射線分別交于A,B兩點,求的面積;
(2)在直角坐標(biāo)系下,直線的參數(shù)方程為(為參數(shù)),求曲線C與直線的交點坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為,圓的參數(shù)方程為
(其中為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓上的點到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的單位長度,已知直線經(jīng)過點P(1,1),傾斜角
(1)寫出直線的參數(shù)方程;(2)設(shè)與圓相交與A,B,求點P到A,B兩點的距離積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知某圓的極坐標(biāo)方程為
(I)將極坐標(biāo)方程化為普通方程,并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(II)若點在該圓上,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分分)
在平面直角坐標(biāo)系xoy中,已知四邊形OABC是平行四邊形,,點M是OA的中點,點P在線段BC上運動(包括端點),如圖
(Ⅰ)求∠ABC的大。
(II)是否存在實數(shù)λ,使?若存在,求出滿足條件的實數(shù)λ的取值范圍;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知極坐標(biāo)系下曲線的方程為,直線經(jīng)過點,傾斜角.
(Ⅰ)求直線在相應(yīng)直角坐標(biāo)系下的參數(shù)方程;
(Ⅱ)設(shè)與曲線相交于兩點,求點到兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,是圓的內(nèi)接三角形,的平分線交圓于點,交于點,過點的圓的切線與的延長線交于點.在上述條件下,給出下列四個結(jié)論:
①平分;②;③;④.
則所有正確結(jié)論的序號是
A.①② | B.③④ | C.①②③ | D.①②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,P、Q分別在BC和AC上,BP∶CP=2∶5,CQ∶QA=3∶4,則等于
A.3∶14 | B.14∶3 |
C.17∶3 | D.17∶14 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com