【題目】(本小題滿(mǎn)分13分)如圖,在直角坐標(biāo)系中,角的頂點(diǎn)是原點(diǎn),始邊與軸正半軸重合.終邊交單位圓于點(diǎn),且,將角的終邊按逆時(shí)針?lè)较蛐D(zhuǎn),交單位圓于點(diǎn),記.
(1)若,求;
(2)分別過(guò)作軸的垂線,垂足依次為,記的面積為,的面積為,若,求角的值.
【答案】(1);(2)
【解析】
試題(1)本題考察的是三角函數(shù)的值,由三角函數(shù)的定義,得,然后利用同角三角函數(shù)的基本關(guān)系可以求出的值,再根據(jù)兩角和的余弦公式代入相應(yīng)的值,即可求出的值.
(2)本題考察的是角的問(wèn)題,根據(jù)題意和三角函數(shù)的定義可得,可以分別求得的解析式,再根據(jù)題中所給的,即可求出的值,最后根據(jù)的取值范圍,從而求出的值.
試題解析: (1)由三角函數(shù)定義,得
因?yàn)?/span>
所以
所以
(2)依題意得
所以
依題意得
整理得
因?yàn)?/span>所以所以即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0,則稱(chēng)x0是f(x)的一個(gè)不動(dòng)點(diǎn),已知f(x)=x2+ax+4在[1,3]恒有兩個(gè)不同的不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汕頭某家電企業(yè)要將剛剛生產(chǎn)的100臺(tái)變頻空調(diào)送往市內(nèi)某商場(chǎng),現(xiàn)有4輛甲型貨車(chē)和8輛乙型貨車(chē)可供調(diào)配,每輛甲型貨車(chē)的運(yùn)輸費(fèi)用是400元,可裝空調(diào)20臺(tái),每輛乙型貨車(chē)的運(yùn)輸費(fèi)用是300元,可裝空調(diào)10臺(tái),若每輛車(chē)至多運(yùn)一次,則企業(yè)所花的最少運(yùn)費(fèi)為( )
A. 2000元B. 2200元C. 2400元D. 2800元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),(為常數(shù)),.曲線在點(diǎn)處的切線與軸平行
(1)求的值;
(2)求的單調(diào)區(qū)間和最小值;
(3)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>I,區(qū)間,記.證明:
(1)函數(shù)在區(qū)間D上單調(diào)遞增的充要條件是:,都有;
(2)函數(shù)在區(qū)間D上單調(diào)遞減的充要條件是:,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若展開(kāi)式中前三項(xiàng)系數(shù)成等差數(shù)列,求:
(1)展開(kāi)式中含x的一次冪的項(xiàng);
(2)展開(kāi)式中所有x 的有理項(xiàng);
(3)展開(kāi)式中系數(shù)最大的項(xiàng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某公司生產(chǎn)某款手機(jī)的年固定成本為40萬(wàn)元,每生產(chǎn)1萬(wàn)只還需另投入16萬(wàn)元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機(jī)萬(wàn)只并全部銷(xiāo)售完,每萬(wàn)只的銷(xiāo)售收入為萬(wàn)元,且
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬(wàn)只時(shí),該公司在該款手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知=(2asin2x,a),=(-1,2 sinxcosx+1),O為坐標(biāo)原點(diǎn),a≠0,設(shè)f(x)=+b,b>a. (1)若a>0,寫(xiě)出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)y=f(x)的定義域?yàn)閇 ,π],值域?yàn)閇2,5],求實(shí)數(shù)a與b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處切線與直線垂直.
(1)試比較與的大小,并說(shuō)明理由;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn),,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com