【題目】下列命題中,假命題的是( )

A.一條直線與兩個平行平面中的一個相交,則必與另一個平面相交.

B.平行于同一平面的兩條直線一定平行.

C.如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面.

D.若直線不平行于平面,且不在平面內(nèi),則在平面內(nèi)不存在與平行的直線.

【答案】B

【解析】

利用線面平行的定義、性質(zhì)定理,面面垂直性質(zhì)定理,四個選項逐一判斷.

選項A: 由直線與平面相交的性質(zhì),知一條直線與兩個平行平面中的一個相交,
則必與另一個平面相交,所以相交;

選項B:平行于同一平面的兩條直線的位置關(guān)系可能是平行、相交或異面;

選項C:由面面垂直的判定定理可知:本命題是真命題;

選項D:根據(jù)線面平行的判定定理可知:本命題是真命題,故本題選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中高一,高二,高三的模聯(lián)社團的人數(shù)分別為35,28,21,現(xiàn)采用分層抽樣的方法從中抽取部分學(xué)生參加模聯(lián)會議,已知在高二年級和高三年級中共抽取7名同學(xué).

(Ⅰ)應(yīng)從高一年級選出參加會議的學(xué)生多少名?

(Ⅱ)設(shè)高二,高三年級抽出的7名同學(xué)分別用表示,現(xiàn)從中隨機抽取名同學(xué)承擔(dān)文件翻譯工作.

(i)試用所給字母列舉出所有可能的抽取結(jié)果;

(ii)設(shè)為事件“抽取的兩名同學(xué)來自同一年級”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p2x2﹣3x+1≤0,qx22a+1x+aa+1≤0

1)若a=,且p∧q為真,求實數(shù)x的取值范圍.

2)若pq的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等邊△ABC中,AC=4,D是邊AC上的點(不與A,C重合),過點D作DE∥BC交AB于點E,沿DE將△ADE向上折起,使得平面ADE⊥平面BCDE,如圖2所示.

(1)若異面直線BE與AC垂直,確定圖1中點D的位置;

(2)證明:無論點D的位置如何,二面角D﹣AE﹣B的余弦值都為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程為ρ= ,直線l的參數(shù)方程為(t為參數(shù),0≤α<π).

(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;

(2)若直線l經(jīng)過點(1,0),求直線l被曲線C截得的線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點,點M在正方形BCC1B1內(nèi)運動,且直線AM//平面A1DE,則動點M 的軌跡長度為( )

A. B. π C. 2 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

用反證法證明命題設(shè)a,b,c為實數(shù),且,,則,,時,要給出的假設(shè)是:a,b,c都不是正數(shù);

若函數(shù)處取得極大值,則;

用數(shù)學(xué)歸納法證明,在驗證成立時,不等式的左邊是;

數(shù)列的前n項和,則是數(shù)列為等比數(shù)列的充要條件;

上述命題中,所有正確命題的序號為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為坐標(biāo)原點,上有兩點,滿足關(guān)于直線軸對稱.

(1)求的值;

(2)若,求線段的長及其中點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)求的單調(diào)區(qū)間;

(2)若(其中為自然對數(shù)的底數(shù)),且恒成立,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案