【題目】已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E為棱CC1的中點(diǎn),點(diǎn)M在正方形BCC1B1內(nèi)運(yùn)動(dòng),且直線AM//平面A1DE,則動(dòng)點(diǎn)M 的軌跡長(zhǎng)度為( )
A. B. π C. 2 D.
【答案】D
【解析】
設(shè)平面DA1E與直線B1C1交于點(diǎn)F,連接AF、EF,則F為B1C1的中點(diǎn).分別取B1B、BC的中點(diǎn)N、O,連接AN、ON、AO,可證出平面A1DE∥平面ANO,從而得到NO是平面BCC1B1內(nèi)的直線.由此得到點(diǎn)M的軌跡被正方形BCC1B1截得的線段是線段ON.
解:設(shè)平面DA1E與直線B1C1交于點(diǎn)F,連接AF、EF,
則F為B1C1的中點(diǎn).
分別取B1B、BC的中點(diǎn)N、O,連接AN、ON、AO,
則∵A1F∥AO,AN∥DE,A1F,DE平面A1DE,
AO,AN平面ANO,
∴A1F∥平面ANO.同理可得DE∥平面ANO,
∵A1F、DE是平面A1DE內(nèi)的相交直線,
∴平面A1DE∥平面ANO,
所以NO∥平面A1DE,
∴直線NO平面A1DE,
∴M的軌跡被正方形BCC1B1截得的線段是線段NO.
∴M的軌跡被正方形BCC1B1截得的線段長(zhǎng)NO.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將長(zhǎng)為4,寬為1的長(zhǎng)方形折疊成長(zhǎng)方體ABCD-A1B1C1D1的四個(gè)側(cè)面,記底面上一邊,連接A1B,A1C,A1D.
(1)求長(zhǎng)方體ABCD-A1B1C1D1體積的最大值 ;
(2)當(dāng)長(zhǎng)方體ABCD-A1B1C1D1的體積最大時(shí),求二面角B-A1C-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】基于移動(dòng)互聯(lián)技術(shù)的共享單車(chē)被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國(guó),帶給人們新的出行體驗(yàn).某共享單車(chē)運(yùn)營(yíng)公司的市場(chǎng)研究人員為了解公司的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:
月份 | 2017.8 | 2017.9 | 2017.10 | 2017.11 | 2017.12 | 2018.1 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
市場(chǎng)占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
(1)請(qǐng)?jiān)诮o出的坐標(biāo)紙中作出散點(diǎn)圖,并用相關(guān)系數(shù)說(shuō)明可用線性回歸模型擬合月度市場(chǎng)占有率與月份代碼之間的關(guān)系;
(2)求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司2018年2月份的市場(chǎng)占有率;
(3)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購(gòu)一批單車(chē)擴(kuò)大市場(chǎng),現(xiàn)有采購(gòu)成本分別為1000元/輛和800元/輛的兩款車(chē)型報(bào)廢年限各不相同.考慮到公司的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款單車(chē)各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車(chē)使用壽命頻數(shù)表如下:
經(jīng)測(cè)算,平均每輛單車(chē)每年可以為公司帶來(lái)收入500元.不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車(chē)的使用壽命都是整數(shù)年,且用頻率估計(jì)每輛單車(chē)使用壽命的概率,以每輛單車(chē)產(chǎn)生利潤(rùn)的期望值為決策依據(jù).如果你是該公司的負(fù)責(zé)人,你會(huì)選擇采購(gòu)哪款車(chē)型?
參考數(shù)據(jù): , , .
參考公式:相關(guān)系數(shù);
回歸直線方程為,其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)現(xiàn)有6名包含在內(nèi)的男志愿者和4名包含在內(nèi)的女志愿者,這10名志愿者要參加第十三屆全運(yùn)會(huì)支援服務(wù)工作,從這些人中隨機(jī)抽取5人參加田賽服務(wù)工作,另外5人參加徑賽服務(wù)工作.
(1)求參加田賽服務(wù)工作的志愿者中包含但不包含的概率;
(2)設(shè)表示參加徑賽服務(wù)工作的女志愿者人數(shù),求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象過(guò)點(diǎn),且不等式的解集為.
(1)求的解析式;
(2)若在區(qū)間上有最小值,求實(shí)數(shù)的值;
(3)設(shè),若當(dāng)時(shí),函數(shù)的圖象恒在圖象的上方,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,已知是邊長(zhǎng)為2的正方形, 為正三角形, 分別為的中點(diǎn), 且, .
(1)求證: 平面;
(2)求證: 平面;
(3)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(-2,0),B(2,0),曲線C上的動(dòng)點(diǎn)P滿足.
(1)求曲線C的方程;
(2)若過(guò)定點(diǎn)M(0,-2)的直線l與曲線C有公共點(diǎn),求直線l的斜率k的取值范圍;
(3)若動(dòng)點(diǎn)Q(x,y)在曲線C上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若, 是方程()的兩個(gè)不同的實(shí)數(shù)根,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為4,點(diǎn), 分別為, 的中點(diǎn),將, ,分別沿, 折起,使, 兩點(diǎn)重合于點(diǎn),連接.
(1)求證: 平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com