【題目】如圖,一個(gè)水輪的半徑為,水輪軸心距離水面的高度為,已知水輪按逆時(shí)針勻速轉(zhuǎn)動(dòng),每分鐘轉(zhuǎn)動(dòng)圈,當(dāng)水輪上點(diǎn)從水中浮現(xiàn)時(shí)的起始(圖中點(diǎn))開(kāi)始計(jì)時(shí),記為點(diǎn)距離水面的高度關(guān)于時(shí)間的函數(shù),則下列結(jié)論正確的是( )
A.
B.
C.若,則
D.不論為何值,是定值
【答案】BD
【解析】
以水輪所在面為坐標(biāo)平面,以水輪的軸心為坐標(biāo)原點(diǎn),軸和軸分別平行和垂直于水面建立平面直角坐標(biāo)系,從而點(diǎn)的縱坐標(biāo)為,逐一判斷選項(xiàng)即可求解.
如圖,以水輪所在面為坐標(biāo)平面,以水輪的軸心為坐標(biāo)原點(diǎn),
軸和軸分別平行和垂直于水面建立平面直角坐標(biāo)系,
依題意得在內(nèi)所轉(zhuǎn)過(guò)的角度為,則.
則點(diǎn)的縱坐標(biāo)為,
點(diǎn)距離水面的高度關(guān)于時(shí)間的函數(shù);
,選項(xiàng)A錯(cuò)誤;
,
,,選項(xiàng)B正確;
由得,解得,選項(xiàng)C錯(cuò)誤;
由
展開(kāi)整理得為定值,選項(xiàng)D正確;
故答案為:BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓離心率為,四個(gè)頂點(diǎn)構(gòu)成的四邊形的面積是4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)與橢圓C交于P,Q均在第一象限,直線(xiàn)OP,OQ的斜率分別為,,且(其中O為坐標(biāo)原點(diǎn)).證明:直線(xiàn)l的斜率k為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,已知橢圓上存在點(diǎn),使,且這樣的點(diǎn)有且只有兩個(gè).
(1)求橢圓的離心率;
(2)過(guò)點(diǎn)的直線(xiàn)與橢圓相交于兩點(diǎn),且,是坐標(biāo)原點(diǎn),求的面積取得最大值時(shí)的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)F是拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn),若點(diǎn)P(x0,4)在拋物線(xiàn)C上,且.
(1)求拋物線(xiàn)C的方程;
(2)動(dòng)直線(xiàn)l:x=my+1(mR)與拋物線(xiàn)C相交于A,B兩點(diǎn),問(wèn):在x軸上是否存在定點(diǎn)D(t,0)(其中t≠0),使得kAD+kBD=0,(kAD,kBD分別為直線(xiàn)AD,BD的斜率)若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)x+alnx.
(1)求f(x)在(1,f(1))處的切線(xiàn)方程(用含a的式子表示)
(2)討論f(x)的單調(diào)性;
(3)若f(x)存在兩個(gè)極值點(diǎn)x1,x2,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出如下四個(gè)命題:①若“且”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,短軸長(zhǎng)為4.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作兩條直線(xiàn),分別交橢圓于兩點(diǎn)(異于),當(dāng)直線(xiàn),的斜率之和為4時(shí),直線(xiàn)恒過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),直線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)分別寫(xiě)出曲線(xiàn)和曲線(xiàn)的極坐標(biāo)方程;
(2)P為曲線(xiàn)上的任意一點(diǎn),過(guò)P向曲線(xiàn)引兩條切線(xiàn)PA、PB,當(dāng)最大時(shí),求P點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生對(duì)消防安全知識(shí)的掌握情況,開(kāi)展了網(wǎng)上消防安全知識(shí)有獎(jiǎng)競(jìng)賽活動(dòng),并對(duì)參加活動(dòng)的男生、女生各隨機(jī)抽取20人,統(tǒng)計(jì)答題成績(jī),分別制成如下頻率分布直方圖和莖葉圖:
(1)把成績(jī)?cè)?/span>80分以上(含80分)的同學(xué)稱(chēng)為“安全通”.根據(jù)以上數(shù)據(jù),完成以下列聯(lián)表,并判斷是否有95%的把握認(rèn)為是否是“安全通”與性別有關(guān)
男生 | 女生 | 合計(jì) | |
安全通 | |||
非安全通 | |||
合計(jì) |
(2)以樣本的頻率估計(jì)總體的概率,現(xiàn)從該校隨機(jī)抽取2男2女,設(shè)其中“安全通”的人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:參考公式,其中.
參考數(shù)據(jù):
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com