【題目】如圖,一個(gè)水輪的半徑為,水輪軸心距離水面的高度為,已知水輪按逆時(shí)針勻速轉(zhuǎn)動(dòng),每分鐘轉(zhuǎn)動(dòng)圈,當(dāng)水輪上點(diǎn)從水中浮現(xiàn)時(shí)的起始(圖中點(diǎn))開(kāi)始計(jì)時(shí),記為點(diǎn)距離水面的高度關(guān)于時(shí)間的函數(shù),則下列結(jié)論正確的是( )

A.

B.

C.,則

D.不論為何值,是定值

【答案】BD

【解析】

以水輪所在面為坐標(biāo)平面,以水輪的軸心為坐標(biāo)原點(diǎn),軸和軸分別平行和垂直于水面建立平面直角坐標(biāo)系,從而點(diǎn)的縱坐標(biāo)為,逐一判斷選項(xiàng)即可求解.

如圖,以水輪所在面為坐標(biāo)平面,以水輪的軸心為坐標(biāo)原點(diǎn),

軸和軸分別平行和垂直于水面建立平面直角坐標(biāo)系,

依題意得內(nèi)所轉(zhuǎn)過(guò)的角度為,則.

則點(diǎn)的縱坐標(biāo)為,

點(diǎn)距離水面的高度關(guān)于時(shí)間的函數(shù)

,選項(xiàng)A錯(cuò)誤;

,

,,選項(xiàng)B正確;

得,解得,選項(xiàng)C錯(cuò)誤;

展開(kāi)整理得為定值,選項(xiàng)D正確;

故答案為:BD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓離心率為,四個(gè)頂點(diǎn)構(gòu)成的四邊形的面積是4.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)若直線(xiàn)與橢圓C交于P,Q均在第一象限,直線(xiàn)OPOQ的斜率分別為,,且(其中O為坐標(biāo)原點(diǎn)).證明:直線(xiàn)l的斜率k為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,已知橢圓上存在點(diǎn),使,且這樣的點(diǎn)有且只有兩個(gè).

1)求橢圓的離心率;

2)過(guò)點(diǎn)的直線(xiàn)與橢圓相交于兩點(diǎn),且,是坐標(biāo)原點(diǎn),求的面積取得最大值時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F是拋物線(xiàn)Cy22pxp0)的焦點(diǎn),若點(diǎn)Px0,4)在拋物線(xiàn)C上,且.

1)求拋物線(xiàn)C的方程;

2)動(dòng)直線(xiàn)lxmy+1mR)與拋物線(xiàn)C相交于A,B兩點(diǎn),問(wèn):在x軸上是否存在定點(diǎn)Dt,0)(其中t≠0),使得kAD+kBD0,(kAD,kBD分別為直線(xiàn)AD,BD的斜率)若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fxx+alnx

1)求fx)在(1f1))處的切線(xiàn)方程(用含a的式子表示)

2)討論fx)的單調(diào)性;

3)若fx)存在兩個(gè)極值點(diǎn)x1,x2,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出如下四個(gè)命題:①若“”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個(gè)數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,短軸長(zhǎng)為4.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作兩條直線(xiàn),分別交橢圓兩點(diǎn)(異于),當(dāng)直線(xiàn),的斜率之和為4時(shí),直線(xiàn)恒過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),直線(xiàn)的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

1)分別寫(xiě)出曲線(xiàn)和曲線(xiàn)的極坐標(biāo)方程;

2P為曲線(xiàn)上的任意一點(diǎn),過(guò)P向曲線(xiàn)引兩條切線(xiàn)PA、PB,當(dāng)最大時(shí),求P點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解學(xué)生對(duì)消防安全知識(shí)的掌握情況,開(kāi)展了網(wǎng)上消防安全知識(shí)有獎(jiǎng)競(jìng)賽活動(dòng),并對(duì)參加活動(dòng)的男生、女生各隨機(jī)抽取20人,統(tǒng)計(jì)答題成績(jī),分別制成如下頻率分布直方圖和莖葉圖:

1)把成績(jī)?cè)?/span>80分以上(含80分)的同學(xué)稱(chēng)為“安全通”.根據(jù)以上數(shù)據(jù),完成以下列聯(lián)表,并判斷是否有95%的把握認(rèn)為是否是“安全通”與性別有關(guān)

男生

女生

合計(jì)

安全通

非安全通

合計(jì)

2)以樣本的頻率估計(jì)總體的概率,現(xiàn)從該校隨機(jī)抽取22女,設(shè)其中“安全通”的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:參考公式,其中.

參考數(shù)據(jù):

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案