(2013•深圳一模)(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.曲線C1的參數(shù)方程為
x=
t
y=t+1.
(t為參數(shù)),曲線C2的極坐標(biāo)方程為ρsinθ-ρcosθ=3,則C1與C2交點在直角坐標(biāo)系中的坐標(biāo)為
(2,5)
(2,5)
分析:利用消去參數(shù)t將曲線C1的參數(shù)方程化成直角坐標(biāo)方程,再將曲線C2的極坐標(biāo)方程也化成直角坐標(biāo)的方程,把曲線C1與C2的方程組成方程組解出對應(yīng)的方程組的解,即得曲線C1與C2的交點坐標(biāo).
解答:解:由曲線C1的參數(shù)方程為
x=
t
y=t+1.
(t為參數(shù)),消去參數(shù)t化為普通方程:y=x2+1(x≥0),
曲線C2的極坐標(biāo)方程為ρsinθ-ρcosθ=3的直角坐標(biāo)方程為:y-x=3;
解方程組 
y=x2+1
y-x=3
,可得 
x=-1
y=2
(不合,舍去)或
x=2
y=5
,
故曲線C1與C2的交點坐標(biāo)為(2,5),
故答案為:(2,5).
點評:本題主要考查把參數(shù)方程或極坐標(biāo)方程化為普通方程的方法,求兩條曲線的交點坐標(biāo),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳一模)已知函數(shù)f(x)=ax+x2-xlna-b(a,b∈R,a>1),e是自然對數(shù)的底數(shù).
(1)試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(2)當(dāng)a=e,b=4時,求整數(shù)k的值,使得函數(shù)f(x)在區(qū)間(k,k+1)上存在零點;
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳一模)設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=log3(1+x),則f(-2)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳一模)已知函數(shù)f(x)=2sin(
πx
6
+
π
3
)(0≤x≤5)
,點A、B分別是函數(shù)y=f(x)圖象上的最高點和最低點.
(1)求點A、B的坐標(biāo)以及
OA
OB
的值;
(2)設(shè)點A、B分別在角α、β的終邊上,求tan(α-2β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳一模)已知數(shù)列{an}滿足:a1=1,a2=a(a≠0),an+2=p•
an+12
an
(其中p為非零常數(shù),n∈N*).
(1)判斷數(shù)列{
an+1
an
}
是不是等比數(shù)列?
(2)求an;
(3)當(dāng)a=1時,令bn=
nan+2
an
,Sn為數(shù)列{bn}的前n項和,求Sn

查看答案和解析>>

同步練習(xí)冊答案