(本題滿分10分)如圖,在四棱錐中,底面是邊長(zhǎng)為2的正方形,且=,的中點(diǎn). 求:
(Ⅰ) 異面直線CM與PD所成的角的余弦值;
(Ⅱ)直線與平面所成角的正弦值.
20. 解:如圖,以為一組基底建立空間直角坐標(biāo)系,

由題可知,,,
( I ),
設(shè)直線與直線所成角為,則

( II )
設(shè)平面的法向量為
因?yàn)?sub>,則
,所以
設(shè)直線與平面所成的角為,
所以
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分9分)
如圖所示的多面體中,已知直角梯形和矩形所在的平面互相垂直,,,,.        
(Ⅰ)證明:平面;
(Ⅱ)設(shè)二面角的平面角為,求的值;
(Ⅲ)的中點(diǎn),在上是否存在一點(diǎn),使得∥平面?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

體積為的球的內(nèi)接正方體的棱長(zhǎng)為_____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分) 如圖所示,在等腰梯形中,,中點(diǎn).將沿折起至,使得平面平面分別為的中點(diǎn).
(Ⅰ) 求證:;
(Ⅱ) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共14分)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一點(diǎn).
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若M,N分別是CC1,AB的中點(diǎn),求證:CN //平面AB1M;
(Ⅲ)若,求二面角A-MB1-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四邊形為矩形,平面,,平面于點(diǎn),且點(diǎn)上.
(Ⅰ)求證:;
(Ⅱ)求四棱錐的體積;
(Ⅲ)設(shè)點(diǎn)在線段上,且,
試在線段上確定一點(diǎn),使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

長(zhǎng)方體ABCD—ABC1D1中,,則點(diǎn)到直線AC的距離是
A.3B.C.D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

底面是正方形的四棱錐ABCDE中,AE⊥底面BCDE,且AECD,GH分別是BE、ED的中點(diǎn),則GH到平面ABD的距離是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.(本小題滿分14分)
如圖所示,PA⊥平面ABC,△ABC中BC⊥AC,
(1)求證:BC平面PAC;
(2)求證:平面PBC平面PAC

查看答案和解析>>

同步練習(xí)冊(cè)答案