【題目】已知函數(shù)f(x)=﹣x3+ax2+bx+c圖象上的點P(1,﹣2)處的切線方程為y=﹣3x+1.
(1)若函數(shù)f(x)在x=﹣2時有極值,求f(x)的表達式
(2)若函數(shù)f(x)在區(qū)間[﹣2,0]上單調遞增,求實數(shù)b的取值范圍.
【答案】
(1)解:f′(x)=﹣3x2+2ax+b,
因為函數(shù)f(x)在x=1處的切線斜率為﹣3,
所以f′(1)=﹣3+2a+b=﹣3,即2a+b=0,
又f(1)=﹣1+a+b+c=﹣2得a+b+c=﹣1.
函數(shù)f(x)在x=﹣2時有極值,所以f'(﹣2)=﹣12﹣4a+b=0,
解得a=﹣2,b=4,c=﹣3,
所以f(x)=﹣x3﹣2x2+4x﹣3
(2)解:因為函數(shù)f(x)在區(qū)間[﹣2,0]上單調遞增,所以導函數(shù)f′(x)=﹣3x2﹣bx+b
在區(qū)間[﹣2,0]上的值恒大于或等于零,
則 得b≥4,所以實數(shù)b的取值范圍為[4,+∞).
【解析】(1)對函數(shù)f(x)求導,由題意點P(1,﹣2)處的切線方程為y=﹣3x+1,可得f′(1)=﹣3,再根據f(1)=﹣1,又由f′(﹣2)=0聯(lián)立方程求出a,b,c,從而求出f(x)的表達式.(2)由題意函數(shù)f(x)在區(qū)間[﹣2,0]上單調遞增,對其求導可得f′(x)在區(qū)間[﹣2,0]大于或等于0,從而求出b的范圍.
科目:高中數(shù)學 來源: 題型:
【題目】若(2-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.求:
(1)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|;
(2)(a0+a2+a4)2-(a1+a2+a3)2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】極坐標系中橢圓C的方程為ρ2= ,以極點為原點,極軸為x軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(1)求該橢圓的直角標方程,若橢圓上任一點坐標為P(x,y),求x+ y的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點Q,且直線AB與CD的傾斜角互補,求證:|QA||QB|=|QC||QD|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側有A,B兩個蔬菜基地,江的另一側點C處有一個超市.已知A、B、C中任意兩點間的距離為20千米.超市欲在AB之間建一個運輸中轉站D,A,B兩處的蔬菜運抵D處后,再統(tǒng)一經過貨輪運抵C處.由于A,B兩處蔬菜的差異,這兩處的運輸費用也不同.如果從A處出發(fā)的運輸費為每千米2元,從B處出發(fā)的運輸費為每千米1元,貨輪的運輸費為每千米3元.
(1)設∠ADC=α,試將運輸總費用S(單位:元)表示為α的函數(shù)S(α),并寫出自變量的取值范圍;
(2)問中轉站D建在何處時,運輸總費用S最。坎⑶蟪鲎钚≈担
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為二次函數(shù),不等式的解集,且在區(qū)間上的最大值為12.
(1)求函數(shù)的解析式;
(2)設函數(shù)在上的最小值為,求的表達式及的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的值;
(Ⅱ)若函數(shù)在區(qū)間上是單調遞增函數(shù),求實數(shù)的最大值;
(Ⅲ)若關于的方程在區(qū)間內有兩個實數(shù)根,分別求實數(shù)與的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com