已知拋物線C的方程為y2=2x,焦點為F,
(1)若C的準(zhǔn)線與x軸的交點為D,過D的直線l與C交于A,B兩點,且|
.
FA
|=2|
.
FB
|,求直線l的斜率;
(2)設(shè)點P是C上的動點,點R,N在y軸上,圓M:(x-1)2+y2=1內(nèi)切于△PRN,求△PRN面積的最小值.
分析:(1)設(shè)A(x1,y1),B(x2,y2),由|FA|=2|FB|,得x1-2x2=
1
2
,將直線與拋物線方程聯(lián)立可得x1+x2,x1x2 的值,解出x1,x2,從而問題得解.
(2)設(shè)P(x0,y0),R(0,b),N(0,c),且b>c,則直線PR的方程可得,由題設(shè)知,圓心(1,0)到直線PR的距離為1,把x0,y0代入化簡整理可得(x0-2)b2+2y0b-x0=0,同理可得(x0-2)c2+2y0c-x0=0,進(jìn)而可知b,c為方程(x0-2)x2+2y0x-x0=0的兩根,根據(jù)求根公式,可求得b-c,進(jìn)而可得△PRN的面積的表達(dá)式,根據(jù)均值不等式可知當(dāng)當(dāng)x0=4時面積最小,進(jìn)而求得點P的坐標(biāo).
解答:解:(1)由拋物線C的方程為y2=2x,得其焦點F(
1
2
,0),
準(zhǔn)線方程為x=-
1
2
,所以D(-
1
2
,0),
由題意設(shè)直線l的斜率為k(k≠0),則直線l的方程為y=kx+
k
2

聯(lián)立
y=kx+
k
2
y2=2x
,得4k2x2+(4k2-8)x+k2=0.
設(shè)直線l與C交于A(x1,y1),B(x2,y2),
x1+x2=
2
k2
-1,x1x2=
1
4

由|
.
FA
|=2|
.
FB
|,得x1-2x2=
1
2

由①②解得x1=1,x2=
1
4
,k=±
2
2
3

代入△=(4k2-8)2-16k4中大于0成立,
所以k=±
2
2
3

(2)設(shè)P(x0,y0),R(0,b),N(0,c),且b>c,
故直線PR的方程為(y0-b)x-x0y+x0b=0.
由題設(shè)知,圓心(1,0)到直線PR的距離為1,
|y0-b+x0b|
(y0-b)2+x02
=1

注意到x0>2,化簡上式,得(x0-2)b2+2y0b-x0=0,
同理可得(x0-2)c2+2y0c-x0=0.
由上可知,b,c為方程(x0-2)x2+2y0x-x0=0的兩根,
根據(jù)求根公式,可得b-c=
4x02+4y02-8x0
x0-2
=
2x0
x0-2

故△PRN的面積為S=
1
2
(b-c)x0
=
x02
x0-2

=(x0-2)+
4
x0-2
+4≥2
(x0-2)•
4
x0-2
+4=8
,
等號當(dāng)且僅當(dāng)x0=4時成立.此時點P的坐標(biāo)為(4,2
2
)或(4,-2
2
).
綜上所述,當(dāng)點P的坐標(biāo)為(4,2
2
)或(4,-2
2
)時,△PRN的面積取最小值8.
點評:本題主要考查了拋物線的標(biāo)準(zhǔn)方程和直線與拋物線的關(guān)系,直線與圓錐曲線的問題常涉及到圓錐曲線的性質(zhì)和直線的基本知識點,如直線被圓錐曲線截得的弦長,中點弦問題,垂直問題,對稱問題等,與圓錐曲線的性質(zhì)有關(guān)的量的范圍問題是常見題型,此題是有一定難度題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的方程為y=x2,過(0,1)點的直線l與C相交于點A,B,證明:OA⊥OB(O為坐標(biāo)原點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江模擬)已知拋物線C的方程為y2=2px(p>0),直線:x+y=m與x軸的交點在拋物線C準(zhǔn)線的右側(cè).
(Ⅰ)求證:直線與拋物線C恒有兩個不同交點;
(Ⅱ)已知定點A(1,0),若直線與拋物線C的交點為Q,R,滿足
AQ
AR
=0
,是否存在實數(shù)m,使得原點O到直線的距離不大于
2
4
,若存在,求出正實數(shù)p的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•合肥三模)已知拋物線C的方程為x2=2py(p>0),過拋物線上點M(-2
p
,p)作△MAB,A、B兩均在拋物線上.過M作x軸的平行線,交拋物線于點N.
(I)若MN平分∠AMB,求證:直線AB的斜率為定值;
(II)若直線AB的斜率為
p
,且點N到直線MA,MB的距離的和為4p,試判斷△MAB的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的方程為x2=2py(p>0),焦點F為 (0,1),點P(x1,y1)是拋物線上的任意一點,過點P作拋物線的切線交拋物線的準(zhǔn)線l于點A(s,t).
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)若x1∈[1,4],求s的取值范圍.
(3)過點A作拋物線C的另一條切線AQ,其中Q(x2,y2)為切點,試問直線PQ是否恒過定點,若是,求出定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的方程為y2=2px(p>0且p為常數(shù)),過焦點F作直線與拋物線交于A(x1,y1),B(x2,y2
①求證:4x1x2=p2
②若拋物線C的準(zhǔn)線l與x軸交于N點且AB⊥AN,求|x1-x2|

查看答案和解析>>

同步練習(xí)冊答案