已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235808314821.png)
在區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235808345521.png)
上是增函數(shù),則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235808361337.png)
的范圍是
試題分析:因為函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235808314821.png)
在區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235808345521.png)
上是增函數(shù),而其函數(shù)的 對稱軸為x=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235808501400.png)
,那么可知,區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235808517914.png)
,故有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235808501400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235808564346.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235808579459.png)
,選A.
點評:解決該試題的關鍵是理解題目中給出的區(qū)間是二次函數(shù)單調(diào)增區(qū)間的子區(qū)間的關系即可,那么求解對稱軸,得到不等式。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
判斷并證明函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234734282704.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234734313539.png)
上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
四個函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002501294437.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002501310502.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002501326466.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002501341470.png)
,,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002501372477.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002501404767.png)
中,在區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002501419566.png)
上為減函數(shù)的是_________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000822815766.png)
,則函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000822830447.png)
的值域為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
已知定義域為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235949246303.png)
的函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235949324907.png)
是奇函數(shù)。
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235949340396.png)
的值;
(Ⅱ)解不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235949371931.png)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知定義在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235343831303.png)
上的函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235343847562.png)
滿足下列條件:①對任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235343862433.png)
都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235343894641.png)
;②若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235343909563.png)
,都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235343925580.png)
;③
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235343956582.png)
是偶函數(shù),則下列不等式中正確的是()
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題12分)定義運算:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235121091809.png)
(1)若已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235121122363.png)
,解關于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235121153266.png)
的不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235121294645.png)
(2)若已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235121309790.png)
,對任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235121403455.png)
,都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235121418838.png)
,求實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235121450312.png)
的取值范圍。
查看答案和解析>>