【題目】已知函數(shù)是R上的偶函數(shù),其中e是自然對數(shù)的底數(shù).

(1)求實(shí)數(shù)的值;

(2)探究函數(shù)上的單調(diào)性,并證明你的結(jié)論;

(3)若函數(shù)有零點(diǎn),求實(shí)數(shù)m的取值范圍.

【答案】(1); (2)見解析; (3).

【解析】

(1)根據(jù)偶函數(shù)的定義得到在R上恒成立,可得;(2)由(1)得上單調(diào)遞增,然后根據(jù)單調(diào)性的定義進(jìn)行證明即可;(3)

由條件得,設(shè),則問題轉(zhuǎn)化為方程在區(qū)間上有實(shí)數(shù)根,然后根據(jù)方程根的分布的知識求解即可得到所求范圍.

(1)∵函數(shù)是偶函數(shù),

,即,

整理得在R上恒成立,

(2)函數(shù)上單調(diào)遞增.證明如下:

當(dāng)時(shí),

設(shè),

,

,即,

,

∴函數(shù)上單調(diào)遞增.

(3)由題意得

,當(dāng)且僅當(dāng)時(shí)等號成立,

∵函數(shù)有零點(diǎn),

∴函數(shù)上有零點(diǎn).

①當(dāng)上只有一個(gè)零點(diǎn)時(shí),

,即,

解得;

②當(dāng)上有兩個(gè)零點(diǎn)時(shí),

,即,

解得

綜上可得

∴當(dāng)函數(shù)有零點(diǎn)時(shí),實(shí)數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知所在的平面, 的直徑, 上一點(diǎn),且中點(diǎn), 中點(diǎn).

(1)求證: ;

(2)求證: ;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,若輸出S= ,則判斷框中M為(

A.k<7?
B.k≤6?
C.k≤8?
D.k<8?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱ABCA1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點(diǎn),

求證:(1)GH∥面ABC

(2)平面EFA1∥平面BCHG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),試判斷函數(shù)在區(qū)間上的單調(diào)性,并證明;

若不等式上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;

(2)若曲線在點(diǎn)處的切線與曲線有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題 :若 ,則 ,下列說法正確的是( )

A. 命題 的否命題是“若 ,則

B. 命題的逆否命題是“若 ,則

C. 命題是真命題

D. 命題的逆命題是真命題

【答案】D

【解析】A. 命題 的否命題是若

B. 命題的逆否命題是,則

C. 命題是假命題,比如當(dāng)x=-3,就不滿足條件,故選項(xiàng)不正確.

D. 命題的逆命題是若是真命題.

故答案為:D.

型】單選題
結(jié)束】
9

【題目】“雙曲線的方程為 ”是“雙曲線的漸近線方程為 ”的( )

A. 充分不必要條件 B. 必要不充分條件

C. 充分必要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 的內(nèi)角 , , 所對的邊分別為 , ,且 , .

(1)當(dāng) 時(shí),求 的值;

(2)當(dāng)的面積為 時(shí),求的周長.

【答案】(1) (2)8

【解析】試題分析:(1)由 , ,由正弦定理得到;(2)根據(jù)面積公式得到,再由余弦定理得到,進(jìn)而得到.

解析:

(1)因?yàn)?/span> ,所以

由正弦定理 ,可得

(2)因?yàn)?/span> 的面積

所以

由余弦定理

,即

所以

所以

所以, 的周長為

型】解答
結(jié)束】
18

【題目】如圖,在四棱錐 中,底面 是平行四邊形, , , , 底面.

(1)求證: 平面 ;

(2)若 的中點(diǎn),求直線 與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,頂點(diǎn)A(a,0),B(0,b),中心O到直線AB的距離為
(1)求橢圓C的方程;
(2)設(shè)橢圓C上一動(dòng)點(diǎn)P滿足: ,其中M,N是橢圓C上的點(diǎn),直線OM與ON的斜率之積為﹣ ,若Q(λ,μ)為一動(dòng)點(diǎn),E1(﹣ ,0),E2 ,0)為兩定點(diǎn),求|QE1|+|QE2|的值.

查看答案和解析>>

同步練習(xí)冊答案