【題目】已知命題 :若 ,則 ,下列說法正確的是( )

A. 命題 的否命題是“若 ,則

B. 命題的逆否命題是“若 ,則

C. 命題是真命題

D. 命題的逆命題是真命題

【答案】D

【解析】A. 命題 的否命題是若

B. 命題的逆否命題是,則

C. 命題是假命題,比如當(dāng)x=-3,就不滿足條件,故選項(xiàng)不正確.

D. 命題的逆命題是若是真命題.

故答案為:D.

型】單選題
結(jié)束】
9

【題目】“雙曲線的方程為 ”是“雙曲線的漸近線方程為 ”的( )

A. 充分不必要條件 B. 必要不充分條件

C. 充分必要條件 D. 既不充分也不必要條件

【答案】A

【解析】雙曲線的方程為,則漸近線方程為,漸近線方程為: ,反之當(dāng)漸近線方程為時(shí),只需要滿足,等軸雙曲線即可.故選擇充分不必要條件.

故答案為:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

(1)求的值;

(2)畫出圖像,并寫出單調(diào)遞增區(qū)間(不需要說明理由);

(3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a0且滿足不等式22a+1>25a﹣2

(1)求實(shí)數(shù)a的取值范圍;

(2)求不等式loga(3x+1)<loga(7﹣5x);

(3)若函數(shù)y=loga(2x﹣1)在區(qū)間[1,3]有最小值為﹣2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是R上的偶函數(shù),其中e是自然對數(shù)的底數(shù).

(1)求實(shí)數(shù)的值;

(2)探究函數(shù)上的單調(diào)性,并證明你的結(jié)論;

(3)若函數(shù)有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,有兩種方式,甲為投資債券等穩(wěn)健型產(chǎn)品,乙為投資股票等風(fēng)險(xiǎn)型產(chǎn)品,設(shè)投資甲、乙兩種產(chǎn)品的年收益分別為萬元,根據(jù)長期收益率市場預(yù)測,它們與投入資金萬元的關(guān)系分別為,(其中,都為常數(shù)),函數(shù),對應(yīng)的曲線,如圖所示

(1)求函數(shù)、的解析式

(2)若該家庭現(xiàn)有萬元資金,全部用于理財(cái)投資,問:如何分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的圖像與軸的交點(diǎn)為,在軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)與軸交點(diǎn)分別為

(1)求的解析式;

(2)將函數(shù)圖像上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍(縱坐標(biāo)不變),再將所得圖像沿軸正方向平移個(gè)單位,得到函數(shù)的圖像,求的解析式;

(3)在(2)的條件下求函數(shù)上的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線 )的焦點(diǎn)為 ,已知點(diǎn) , 為拋物線上的兩個(gè)動點(diǎn),且滿足 .過弦 的中點(diǎn) 作拋物線準(zhǔn)線的垂線 ,垂足為 ,則 的最大值為__________

【答案】1

【解析】設(shè),在三角形ABF中,用余弦定理得到

,

故最大值為1.

故答案為:1.

點(diǎn)睛:本題主要考查了拋物線的簡單性質(zhì).解題的關(guān)鍵是利用了拋物線的定義。一般和拋物線有關(guān)的小題,很多時(shí)可以應(yīng)用結(jié)論來處理的;平時(shí)練習(xí)時(shí)應(yīng)多注意拋物線的結(jié)論的總結(jié)和應(yīng)用。尤其和焦半徑聯(lián)系的題目,一般都和定義有關(guān),實(shí)現(xiàn)點(diǎn)點(diǎn)距和點(diǎn)線距的轉(zhuǎn)化。

型】填空
結(jié)束】
17

【題目】設(shè) 的內(nèi)角 , 所對的邊分別為 , , ,且 , .

(1)當(dāng) 時(shí),求 的值;

(2)當(dāng)的面積為 時(shí),求的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,過點(diǎn)A作⊙O的切線EP交CB的延長線于P,∠PAB=35°.

(1)若BC是⊙O的直徑,求∠D的大小;
(2)若∠PAB=35°,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,QAD的中點(diǎn).

(Ⅰ)若PA=PD,求證:平面PQB⊥平面PAD;

(Ⅱ)點(diǎn)M在線段PC上,PM=tPC,試確定實(shí)數(shù)t的值,使PA∥平面MQB

(Ⅲ)在(Ⅱ)的條件下,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.

查看答案和解析>>

同步練習(xí)冊答案