【題目】如圖,已知所在的平面, 的直徑, 上一點,且中點, 中點.

(1)求證:

(2)求證: ;

(3)求三棱錐的體積.

【答案】(1)見解析(2) 見解析(3)

【解析】試題分析:(1根據(jù)直線與平面平行的判定定理可知只需證與面內(nèi)一直線平行即可,根據(jù)中位線定理可知,,滿足定理所需條件; 2,,的直徑,,,則,由于所以;(3根據(jù),即為三棱錐的高將三棱錐的體積轉(zhuǎn)化成三棱錐的體積,根據(jù)錐體的體積公式進(jìn)行求解即可.

試題解析(1)證明:在三角形中, 中點, 中點,

, 平面平面,∴;

(2)證明:∵ 平面,∴,

又∵的直徑,∴,

,∴,

,∴;

(3)∵,∴,

中,∵,∴,

【方法點晴】本題主要考查線面平行的判定定理、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了對教師教學(xué)水平和教師管理水平進(jìn)行評價,從該校學(xué)生中選出300人進(jìn)行統(tǒng)計.其中對教師教學(xué)水平給出好評的學(xué)生人數(shù)為總數(shù)的60%,對教師管理水平給出好評的學(xué)生人數(shù)為總數(shù)的75%,其中對教師教學(xué)水平和教師管理水平都給出好評的有120人.
(1)填寫教師教學(xué)水平和教師管理水平評價的2×2列聯(lián)表:

對教師管理水平好評

對教師管理水平不滿意

合計

對教師教學(xué)水平好評

對教師教學(xué)水平不滿意

合計

問:是否可以在犯錯誤概率不超過0.1%的前提下,認(rèn)為教師教學(xué)水平好評與教師管理水平好評有關(guān)、
(2)若將頻率視為概率,有4人參與了此次評價,設(shè)對教師教學(xué)水平和教師管理水平全好評的人數(shù)為隨機(jī)變量X;
①求對教師教學(xué)水平和教師管理水平全好評的人數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方差.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足: ,anan+1<0(n≥1),數(shù)列{bn}滿足:bn=an+12﹣an2(n≥1).
(1)求數(shù)列{an},{bn}的通項公式
(2)證明:數(shù)列{bn}中的任意三項不可能成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某體校為了備戰(zhàn)明年四月份省劃艇單人雙槳比賽,對本校甲、乙兩名劃艇運(yùn)動員在相同條件下進(jìn)行了6次測試,測得他們劃艇最大速度單位:數(shù)據(jù)如下:

甲:27,38,30,37,35,31;

乙:33,29,38,34,28,36.

試用莖葉圖表示甲、乙兩名運(yùn)動員測試的成績;

根據(jù)測試的成績,你認(rèn)為派哪名運(yùn)動員參加明年四月份的省劃艇單人雙槳比賽比較合適?并說明你的理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】貴陽與凱里兩地相距約200千米,一輛貨車從貴陽勻速行駛到凱里,規(guī)定速度不得超過100千米時,已知貨車每小時的運(yùn)輸成本以元為單位由可變部分和固定部分組成:可變部分與速度千米的平方成正比,比例系數(shù)為;固定部分為64元.

把全程運(yùn)輸成本表示為速度千米的函數(shù),并指出這個函數(shù)的定義域;

為了使全程運(yùn)輸成本最小,貨車應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

求函數(shù)的單調(diào)遞增區(qū)間;

證明:當(dāng),

(Ⅲ)確定實數(shù)的值,使得存在當(dāng)恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點到其焦點的距離為2.

(1)求拋物線的方程;

(2)若直線與圓切于點,與拋物線切于點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C,直線l

求證:直線l與圓C必相交;

求直線l被圓C截得的弦長最短時直線l的方程以及最短弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1(側(cè)棱垂直于底面的棱柱為直棱柱)中,BC=CC1=1,AC=2,∠ABC=90°.

(1)求證:平面ABC1⊥平面A1B1C;
(2)設(shè)D為AC的中點,求平面ABC1與平面C1BD所成銳角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案