A. | π2-1 | B. | π2+1 | C. | -π | D. | 0 |
分析 先求出f(-1)=${2}^{-1}=\frac{1}{2}$,從而f(f(-1))=f($\frac{1}{2}$)=0,進而f(f(f(-1)))=f(0),由此能求出結果.
解答 解:∵函數$\left\{\begin{array}{l}{0,x>0}\\{-π,x=0}\\{{2}^{x},x<0}\end{array}\right.$,
∴f(-1)=${2}^{-1}=\frac{1}{2}$,
f(f(-1))=f($\frac{1}{2}$)=0,
f(f(f(-1)))=f(0)=-π.
故選:C.
點評 本題考查函數值的求法,是基礎題,解題時要認真審題,注意函數性質的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [3,5) | B. | [1,3] | C. | (5,+∞) | D. | (-3,3] |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com