20.若直線ax+2y+2=0與直線x-y-2=0垂直,則a=-1.

分析 利用直線相互垂直與斜率之間的關(guān)系即可得出.

解答 解:∵直線ax+2y+2=0與直線x-y-2=0互相垂直,
∴-$\frac{a}{2}×1$=-1,解得a=2.
故答案為:2.

點(diǎn)評 本題考查了直線相互垂直與斜率之間的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)是定義在(0,+∞)上的非負(fù)可導(dǎo)函數(shù),且滿足f(x)+xf'(x)≤0.對任意正數(shù)a、b,若a<b,則必有( 。
A.af(b)≤bf(a)B.bf(a)≤af(b)C.af(a)≤bf(b)D.bf(b)≤af(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù) f(x)=$\frac{x+3}{x-6}$,則 f(3)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合U=R,A={x|-1<x<10},B={x|x-4≥0},則A∩∁UB=( 。
A.{x|-1<x<4}B.{x|-1<x≤4}C.{x|4≤x<10}D.{x|-1≤x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)f(x)滿足f(2x+1)=3-2x,則f(x)的解析式為f(x)=4-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,直線3x-y+$\sqrt{5}$=0截以原點(diǎn)O為圓心的圓所得的弦長為$\sqrt{14}$
(1)求圓O的方程;
(2)若直線l與圓O切于第一象限,且與坐標(biāo)軸交于點(diǎn)D、E,當(dāng)DE長最小時,求直線l的方程;
(3)設(shè)M、P是圓O上任意兩點(diǎn),點(diǎn)M關(guān)于x軸的對稱點(diǎn)為N,若直線MP、NP分別交x軸于點(diǎn)(m,0)和(n,0),問mn是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=x2-2ax+2的單調(diào)減區(qū)間為(-∞,4],則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={(x,y)|x+y-1=0},B={(x,y)|x2+y2=1},則A∩B=(  )
A.{0,1}B.{(0,1),(1,0)}C.{(0,1)}D.{(1,0)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)$\left\{\begin{array}{l}{0,x>0}\\{-π,x=0}\\{{2}^{x},x<0}\end{array}\right.$,則f(f(f(-1)))的值等于(  )
A.π2-1B.π2+1C.D.0

查看答案和解析>>

同步練習(xí)冊答案