【題目】橢圓離心率為,,是橢圓的左、右焦點,以為圓心,為半徑的圓和以為圓心、為半徑的圓的交點在橢圓上.

(1)求橢圓的方程;

(2)設橢圓的下頂點為,直線與橢圓交于兩個不同的點,是否存在實數(shù)使得以為鄰邊的平行四邊形為菱形?若存在,求出的值;若不存在,說明理由.

【答案】(1);(2)答案見解析.

【解析】試題分析:(1)第一問,直接根據(jù)已知條件得到關于a,c的方程組解答即可. (2)第二問,先設MN的中點為H,再利用韋達定理得到點H的坐標,再根據(jù)求出k的值,最后利用判別式檢驗.

試題解析:

(1)由題意可得

解得,

所以,

所以橢圓的方程為;

(2)由題意知

聯(lián)立方程,整理得 ,

(化簡可得),①

,則

,

中點為,

,知,

所以點的坐標為,

因為,所以

又直線斜率均存在,所以.

于是 ,

解得,即,

代入①,滿足.故存在使得以為鄰邊的平行四邊形可以是菱形,值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖在長為10千米的河流的一側(cè)有一條觀光帶,觀光帶的前一部分為曲線段,設曲線段為函數(shù)(單位:千米)的圖象,且圖象的最高點為;觀光帶的后一部分為線段

(1)求函數(shù)為曲線段的函數(shù)的解析式;

(2)若計劃在河流和觀光帶之間新建一個如圖所示的矩形綠化帶,綠化帶僅由線段構(gòu)成,其中點在線段上.當長為多少時,綠化帶的總長度最長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=lg的圖象關于原點對稱,其中a為常數(shù).

(Ⅰ)求a的值,并求出fx)的定義域

(Ⅱ)關于x的方程f(2x)+21g(2x-1)=ax∈[,]有實數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二項式 的展開式.

(1)求展開式中含項的系數(shù);

(2)如果第項和第項的二項式系數(shù)相等,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)當時,方程恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍;

(3)將函數(shù)的圖象向右平移個單位后所得函數(shù)的圖象關于原點中心對稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=4sinxcos(x+)+1.

(1)求f()的值;

(2)求f(x)的最小正周期;

(3)求f(x)在區(qū)間[0,]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是

A. 對分類變量XY,隨機變量K2的觀測值k越大,則判斷“XY有關系的把握程度越小

B. 在回歸直線方程=0.2x+0.8中,當解釋變量x每增加1個單位時,預報變量平均增加0.2個單位

C. 兩個隨機變量的線性相關性越強,則相關系數(shù)的絕對值就越接近于1

D. 回歸直線過樣本點的中心(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A是橢圓E: =1的左頂點,斜率為k(k>0)的直線交E與A,M兩點,點N在E上,MA⊥NA.
(1)當|AM|=|AN|時,求△AMN的面積
(2)當2|AM|=|AN|時,證明: <k<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fx)=x3ax2bx+1的導數(shù)滿足,其中常數(shù)a,bR.

(1)求曲線yfx)在點(1,f(1))處的切線方程;

(2)設,求函數(shù)gx)的極值.

查看答案和解析>>

同步練習冊答案