【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)將函數(shù)的圖象向右平移個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱,求的最小值.
【答案】(1);(2);(3)
【解析】
(1)由余弦函數(shù)的單調(diào)性,解不等式,,即可求出;(2)利用函數(shù)的性質(zhì),結(jié)合在時(shí)的單調(diào)性與最值,可得實(shí)數(shù)的取值范圍;(3)先求出的解析式,然后利用圖象關(guān)于原點(diǎn)中心對(duì)稱,是奇函數(shù),可求出的最小值。
(1)由余弦函數(shù)的單調(diào)性,解不等式,,
得,所以函數(shù)的單調(diào)遞增區(qū)間為;
(2)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,
所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,
則,,,
所以當(dāng)時(shí),函數(shù)與函數(shù)的圖象有兩個(gè)公共點(diǎn),
即當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)數(shù)根時(shí)。
(3)函數(shù)的圖象向右平移個(gè)單位,
得到,則是奇函數(shù),
則,
即,,
則
因?yàn)?/span>,所以當(dāng)時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中, 且.
(1)求出,,;
(2)歸納猜想出數(shù)列的通項(xiàng)公式;
(3)證明通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,點(diǎn)D是AB的中點(diǎn).
(1)求證:CD⊥平面A1ABB1;
(2)求證:AC1∥平面CDB1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)與的圖像有兩個(gè)不同交點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=2sin(2x+ )的圖象向右平移 個(gè)周期后,所得圖象對(duì)應(yīng)的函數(shù)為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin(2x﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓離心率為,,是橢圓的左、右焦點(diǎn),以為圓心,為半徑的圓和以為圓心、為半徑的圓的交點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)橢圓的下頂點(diǎn)為,直線與橢圓交于兩個(gè)不同的點(diǎn),是否存在實(shí)數(shù)使得以為鄰邊的平行四邊形為菱形?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校的課外綜合實(shí)踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到市氣象觀測(cè)站與市博愛醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 (°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù) (個(gè)) | 22 | 25 | 29 | 26 | 16 | 12 |
該綜合實(shí)踐研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程.
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數(shù)據(jù): ;
.
參考公式:回歸直線,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體ABCD-A1B1C1D1中,E為AB中點(diǎn),F為CD1中點(diǎn).
(1)求證:EF∥平面ADD1A1;
(2)求直線EF和平面CDD1C1所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com