如圖,四棱錐F-ABCD的底面ABCD是菱形,其對(duì)角線AE、CF都與平面ABCD垂直,AE=1,CF=2.

(1)求二面角B-AF-D的大;
(2)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.

(1)(2).

解析試題分析:(1)方法一:連接交于菱形的中心,過,為垂足,連接,根據(jù)定義可知為二面角的平面角,在三角形中求出此角即可;
方法二:設(shè)交點(diǎn)為,以為坐標(biāo)原點(diǎn),分別以所在直線為軸建立如圖所示的空間直角坐標(biāo)系, 設(shè)平面,平面的法向量分別為,利用的公式進(jìn)行計(jì)算.
(2)連接,設(shè)直線與直線相交于點(diǎn),則四棱錐與四棱錐的公共部分為四棱錐,過平面,為垂足,然后求出,利用體積公式求解即可.
試題解析:(1)方法一:如圖(1)連結(jié)AC、BD交于菱形的中心O,過O
作OG⊥AF,G為垂足. 連結(jié)BG、DG.
由BD⊥AC,BD⊥CF,得BD⊥平面ACF, 故BD⊥AF. 于是AF⊥平面BGD,
所以BG⊥AF,DG⊥AF,∠BGD為二面角B-AF-D的平面角.        3分

由FC⊥AC,F(xiàn)C=AC=2,得∠FAC.
由OB⊥OG,OB=OD=,得∠BGD=2∠BGO.
即二面角B-AF-D的大小為.          6分

方法二:設(shè)AC與BD交點(diǎn)為O,以O(shè)為坐標(biāo)原點(diǎn),分別以BD 、AC所在直線為x軸
y軸建立如圖所示的空間直角坐標(biāo)系
則A(0,-1,0),B(,0,0),D(,0,0),F(xiàn)(0,1,2)
,,            2分
設(shè)平面ABF,平面ADF的法向量分別為
設(shè)
 
            4分
同理可得  ∴ ∴ 
∴二面角B-AF-D的大小為                   6分
(2)如圖(2)連EB、EC、ED,設(shè)直線AF與直線CE相交于點(diǎn)H,
則四棱錐E-ABCD與四棱錐F-ABCD的公共部分為四棱錐H-ABCD.
過H作HP⊥平面ABCD,所以平面ACFE⊥平面ABCD,
從而.             7分
,得.        9分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/84/f/qzpjb3.png" style="vertical-align:middle;" />
故四棱錐的體積.     12分
考點(diǎn):1.二面角的計(jì)算;2.幾何體的體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)證明:PQ⊥平面DCQ;
(2)求棱錐Q­ABCD的體積與棱錐P­DCQ的體積的比值.[來

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是線段AE上的動(dòng)點(diǎn).
(1)試確定點(diǎn)M的位置,使AC∥平面MDF,并說明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在五面體中,已知平面,,,

(1)求證:
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△中,,,,在三角形內(nèi)挖去一個(gè)半圓(圓心在邊上,半圓與、分別相切于點(diǎn)、,與交于點(diǎn)),將△繞直線旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體.

(1)求該幾何體中間一個(gè)空心球的表面積的大;
(2)求圖中陰影部分繞直線旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AC=BC,點(diǎn)D是AB的中點(diǎn).

(1)求證:BC1∥平面CA1D;
(2)求證:平面CA1D⊥平面AA1B1B;
(3)若底面ABC為邊長為2的正三角形,BB1=求三棱錐B1-A1DC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓錐母線長為6,底面圓半徑長為4,點(diǎn)是母線的中點(diǎn),是底面圓的直徑,半徑與母線所成的角的大小等于

(1)求圓錐的側(cè)面積和體積.
(2)求異面直線所成的角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓臺(tái)的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和。
(1)求該圓臺(tái)的母線長;(2)求該圓臺(tái)的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四面體ABCD中,△ABC與△DBC都是邊長為4的正三角形.

(1)求證:BCAD;
(2)試問該四面體的體積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)棱長AD的大。蝗舨淮嬖,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案