【題目】如圖,四棱錐中,底面為矩形,底面,,分別為的中點.
(1)求證:平面;
(2)求證:平面平面;
【答案】(1)證明見解析.(2)證明見解析
【解析】
(1)取中點,可證得,得到四邊形為平行四邊形,進而得到,由線面平行判定定理可證得結(jié)論;
(2)由線面垂直的性質(zhì)、矩形的特點和線面垂直的判定定理可證得平面,由此得到,由等腰三角形三線合一得到,利用線面垂直的判定、面面垂直的判定定理,結(jié)合平行關(guān)系即可證得結(jié)論.
(1)取中點,連結(jié).
是的中點,且,
又底面為矩形,是中點,且,
,四邊形為平行四邊形,,
又平面,平面,平面.
(2)底面,平面,,
又底面為矩形,,
,平面,平面,
平面,,
,為中點,,
又,平面,平面,
由(1)知:,平面,
又面,平面平面.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地空氣中出現(xiàn)污染,須噴灑一定量的去污劑進行處理.據(jù)測算,每噴灑1個單位的去污劑,空氣中釋放的濃度(單位:毫克/立方米)隨著時間(單位:天)變化的函數(shù)關(guān)系式近似為,若多次噴灑,則某一時刻空氣中的去污劑濃度為每次投放的去污劑在相應(yīng)時刻所釋放的濃度之和.由實驗知,當(dāng)空氣中去污劑的濃度不低于4(毫克/立方米)時,它才能起到去污作用.
(1)若一次噴灑1個單位的去污劑,則去污時間可達幾天?
(2)若第一次噴灑1個單位的去污劑,6天后再噴灑個單位的去污劑,要使接下來的4天中能夠持續(xù)有效去污,試求的最小值?(精確到)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校有1400名考生參加市模擬考試,現(xiàn)采取分層抽樣的方法從
文、理考生中分別抽取20份和50份數(shù)學(xué)試卷,進行成績分析,
得到下面的成績頻數(shù)分布表:
分數(shù)分組 | [0,30) | [30,60) | [60,90) | [90,120) | [120,150] |
文科頻數(shù) | 2 | 4 | 8 | 3 | 3 |
理科頻數(shù) | 3 | 7 | 12 | 20 | 8 |
(1)估計文科數(shù)學(xué)平均分及理科考生的及格人數(shù)(90分為及格分數(shù)線);
(2)在試卷分析中,發(fā)現(xiàn)概念性失分非常嚴重,統(tǒng)計結(jié)果如下:
文理 失分 | 文 | 理 |
概念 | 15 | 30 |
其它 | 5 | 20 |
問是否有90%的把握認為概念失分與文、理考生的不同有關(guān)?(本題可以參考獨立性檢驗臨界值表:)
( | <>0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銷售某種活蝦,根據(jù)以往的銷售情況,按日需量x(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500] 進行分組,得到如圖所示的頻率分布直方圖.這種活蝦經(jīng)銷商進價成本為每公斤15元,當(dāng)天進貨當(dāng)天以每公斤20元進行銷售,當(dāng)天未售出的須全部以每公斤10元賣給冷凍庫.某水產(chǎn)品經(jīng)銷商某天購進了300公斤這種活蝦,設(shè)當(dāng)天利潤為Y元.
(1)求Y關(guān)于x的函數(shù)關(guān)系式;
(2)結(jié)合直方圖估計利潤Y不小于300元的概率;
(3)在直方圖的日需量分組中,以各組的區(qū)間中點值代表該組的各個值,日需量落入該區(qū)間的頻率作為日需量取該區(qū)間中點值的概率,求Y的平均估計值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進行檢驗.
(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: ,)
參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求的值域;
(2)求函數(shù)的最小正周期及函數(shù)的單調(diào)區(qū)間;
(3)將函數(shù)的圖像向右平移個單位后,再將得到的圖像上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)保持不變,得到函數(shù)的圖像,求函數(shù)的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)今年1月,2月,3月患某種傳染病的人數(shù)分別為42,48,52.為了預(yù)測以后各月的患病人數(shù),甲選擇了模型,乙選擇了模型,其中為患病人數(shù),為月份數(shù),a,b,c,p,q,r都是常數(shù).結(jié)果4月,5月,6月份的患病人數(shù)分別為54,57,58.
(1)求a,b,c,p,q,r的值;
(2)你認為誰選擇的模型好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)a=1時,寫出的單調(diào)遞增區(qū)間(不需寫出推證過程);
(Ⅱ)當(dāng)x>0時,若直線y=4與函數(shù)的圖像交于A,B兩點,記,求的最大值;
(Ⅲ)若關(guān)于x的方程在區(qū)間(1,2)上有兩個不同的實數(shù)根,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com