【題目】已知函數(shù).

(Ⅰ)當(dāng)a=1時,寫出的單調(diào)遞增區(qū)間(不需寫出推證過程);

(Ⅱ)當(dāng)x>0時,若直線y=4與函數(shù)的圖像交于A,B兩點,記,求的最大值;

(Ⅲ)若關(guān)于x的方程在區(qū)間(1,2)上有兩個不同的實數(shù)根,求實數(shù)a的取值范圍.

【答案】(1)遞增區(qū)間為; (2)4; (3).

【解析】

(Ⅰ)當(dāng)時,,由此能求出的單調(diào)遞增區(qū)間;

(Ⅱ)由,得當(dāng)時,y=fx)的圖象與直線y=4沒有交點;當(dāng)a=4a=0時,y=fx)的圖象與直線y=4只有一個交點;當(dāng)時,;當(dāng)時,由,得,由,得,由此能求出的最大值;

(Ⅲ)要使關(guān)于x的方程有兩個不同的實數(shù)根,則,且,根據(jù),且進(jìn)行分類討論能求出的取值范圍.

(Ⅰ)fx)的單調(diào)遞增區(qū)間為.

(Ⅱ)因為x>0,所以(i)當(dāng)a>4時,yfx)的圖像與直線y=4沒有交點;

ii)當(dāng)a=4或a=0時,yfx)的圖像與直線y=4只有一個交點;

iii)當(dāng)0<a<4時,0<ga)<4;

(iv)當(dāng)a<0時,由

,

解得;

,

解得.

所以.

的最大值是4.

(Ⅲ)要使關(guān)于x的方程 (*)

有兩個不同的實數(shù)根,則.

i)當(dāng)a>1時,由(*)得,

所以,不符合題意;

ii)當(dāng)0<a<4時,由(*)得,其對稱軸,不符合題意;

iii)當(dāng)a<0,且a-1時,由(*)得,

又因,所以a<-1.

所以函數(shù)是增函數(shù),

要使直線與函數(shù)圖像在(1,2)內(nèi)有兩個交點,

,

只需

解得.

綜上所述,a的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,底面,分別為的中點.

1)求證:平面

2)求證:平面平面;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,.分別是的中點,求證:

(Ⅰ)底面;

(Ⅱ)平面;

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線

1)若直線與圓交于不同的兩點,當(dāng)時,求實數(shù)的值;

2)若是直線上的動點,過作圓的兩條切線、,切點為、,試探究:直是否過定點.若存在,請求出定點的坐標(biāo);否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列四個說法中:

表示同一函數(shù);

②已知函數(shù)的定義域為,則的定義域為;

③不等式對于恒成立,則的取值范圍是;

④對于集合,

,則的取值范圍,其中正確說法的序號是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記無窮數(shù)列的前項中最大值為,最小值為,令

(Ⅰ)若,請寫出的值;

(Ⅱ)求證:“數(shù)列是等差數(shù)列”是“數(shù)列是等差數(shù)列”的充要條件;

(Ⅲ)若 ,求證:存在,使得,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)對排列如下:(11),(12),(2,1),(13),(2,2),(3,1),(1,4),(2,3),(32),(41),(15),(2,4......則第60個整數(shù)對是(

A.(57)B.(11,5)C.(75)D.(5,11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鎮(zhèn)在政府精準(zhǔn)扶貧的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入.政府計劃共投入72萬元,全部用于甲、乙兩個合作社,每個合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進(jìn)行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚的收益、養(yǎng)雞的收益與投入(單位:萬元)滿足.設(shè)甲合作社的投入為(單位:萬元),兩個合作社的總收益為(單位:萬元).

1)若兩個合作社的投入相等,求總收益;

2)試問如何安排甲、乙兩個合作社的投入,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

同步練習(xí)冊答案