【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,,Sn=n2an-n(n-1),n=1,2,…
(1)證明:數(shù)列{Sn}是等差數(shù)列,并求Sn;
(2)設(shè),求證 :b1+b2+…+bn<1.
【答案】(1). (2) 見(jiàn)解析.
【解析】試題分析:(1)在已知遞推式式中,利用,化簡(jiǎn)可得,故而可證得結(jié)論;(2)利用裂項(xiàng)相消法求其前項(xiàng)和即可.
試題解析:(1)由Sn=n2an-n(n-1)知,
當(dāng)n≥2時(shí)Sn=n2(Sn-Sn-1)-n(n-1),
即(n2-1)Sn-n2Sn-1=n(n-1),∴Sn-Sn-1=1,對(duì)n≥2成立.
又S1=1,∴{Sn}是首項(xiàng)為1,公差為1的等差數(shù)列.
Sn=1+(n-1)·1 ,∴Sn=.
(2)bn===-.
∴b1+b2+……+bn=1-+-+…-=1-<1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為正常數(shù).
⑴若,且,求函數(shù)的單調(diào)增區(qū)間;
⑵在⑴中當(dāng)時(shí),函數(shù)的圖象上任意不同的兩點(diǎn),線段的中點(diǎn)為,記直線的斜率為,試證明: .
⑶若,且對(duì)任意的, ,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開(kāi)設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對(duì)100名高一新生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 10 | ||
女生 | 20 | ||
合計(jì) |
已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為.
(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整:并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說(shuō)明你的理由;
(2)針對(duì)于問(wèn)卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機(jī)抽取6人成立游泳科普知識(shí)宣傳組,并在這6人中任選2人作為宣傳組的組長(zhǎng),設(shè)這兩人中男生人數(shù)為,求的分布列和數(shù)學(xué)期望.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和爸爸周末到濕地公園進(jìn)行鍛煉,兩人上午9:00從公園入口出發(fā),沿相同路線勻速運(yùn)動(dòng),小明15分鐘后到達(dá)目的地,此時(shí)爸爸離出發(fā)地的路程為1200米,小明到達(dá)目的地后立即按原路勻速返回,與爸爸相遇后,和爸爸一起從原路返回出發(fā)地.小明、爸爸在鍛煉過(guò)程中離出發(fā)地的路程與小明出發(fā)的時(shí)間的函數(shù)關(guān)系如圖.
(1)圖中________, _______;
(2)求小明和爸爸相遇的時(shí)刻.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某村積極開(kāi)展“美麗鄉(xiāng)村生態(tài)家園”建設(shè),現(xiàn)擬在邊長(zhǎng)為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設(shè)美麗鄉(xiāng)村生態(tài)公園,給村民休閑健身提供去處.點(diǎn)M,N分別在邊AB,AD上. (Ⅰ)當(dāng)點(diǎn)M,N分別是邊AB,AD的中點(diǎn)時(shí),求∠MCN的余弦值;
(Ⅱ)由于村建規(guī)劃及保護(hù)生態(tài)環(huán)境的需要,要求△AMN的周長(zhǎng)為2千米,請(qǐng)?zhí)骄俊螹CN是否為定值,若是,求出此定值,若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓,動(dòng)圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.
(1)求的方程;
(2)是與圓,圓都相切的一條直線,與曲線交于兩點(diǎn),當(dāng)圓的半徑最長(zhǎng)時(shí),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方體ABCD-A1B1C1D1中,E,F分別是AB,AA1的中點(diǎn).
求證:(1)E,C,D1,F四點(diǎn)共面;
(2)CE,D1F,DA三線共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們可以用隨機(jī)模擬的方法估計(jì)的值,如圖程序框圖表示其基本步驟(函數(shù)是產(chǎn)生隨機(jī)數(shù)的函數(shù),它能隨機(jī)產(chǎn)生內(nèi)的任何一個(gè)實(shí)數(shù)).若輸出的結(jié)果為,則由此可估計(jì)的近似值為( )
A. 3.119 B. 3.124 C. 3.132 D. 3.151
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com