【題目】某中學(xué)擬在高一下學(xué)期開(kāi)設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對(duì)100名高一新生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 10 | ||
女生 | 20 | ||
合計(jì) |
已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為.
(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整:并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說(shuō)明你的理由;
(2)針對(duì)于問(wèn)卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機(jī)抽取6人成立游泳科普知識(shí)宣傳組,并在這6人中任選2人作為宣傳組的組長(zhǎng),設(shè)這兩人中男生人數(shù)為,求的分布列和數(shù)學(xué)期望.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
【答案】(1)列聯(lián)表見(jiàn)解析,有的把握認(rèn)為喜歡游泳與性別有關(guān);(2)分布列見(jiàn)解析,.
【解析】
試題分析:(1)根據(jù)題意完成列聯(lián)表,根據(jù)給出的公式求出相關(guān)系數(shù)的值,對(duì)比臨界值表,若,則有的把握認(rèn)為喜歡游泳與性別有關(guān),否則無(wú)關(guān);(2)的所有可能取值為,根據(jù)取各值的數(shù)學(xué)意義求出其概率,得到分布列和數(shù)學(xué)期望.
試題解析:(1)因?yàn)樵?00人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為,
所以喜歡游泳的學(xué)生人數(shù)為人...................1分
其中女生有20人,則男生有40人,列聯(lián)表補(bǔ)充如下:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 40 | 10 | 50 |
女生 | 20 | 30 | 50 |
合計(jì) | 60 | 40 | 100 |
................................................3分
因?yàn)?/span>................... 5分
所以有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)......................6分
(2)喜歡游泳的共60人,按分層抽樣抽取6人,則每個(gè)個(gè)體被抽到的概率均為,
從而需抽取男生4人,女生2人.
故的所有可能取值為0,1,2......................... 7分
,
的分布列為:
0 | 1 | 2 | |
................................ 10分
.................12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), , 為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若函數(shù)存在兩個(gè)零點(diǎn),求的取值范圍;
(Ⅱ)若對(duì)任意, , 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為其定義域內(nèi)的奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)求不等式的解集;
(3)證明: 為無(wú)理數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面是正方形,側(cè)面底面,且,分別為的中點(diǎn).
(1)求證:平面;
(2)在線段上是否存在點(diǎn),使得二面角的余弦值為,若存在,請(qǐng)求出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的短軸長(zhǎng)為,離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若分別是橢圓的左、右焦點(diǎn),過(guò)的直線與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在單位正方體 中,O是 的中點(diǎn),如圖建立空間直角坐標(biāo)系.
(1)求證 ∥平面 ;
(2)求異面直線與OD夾角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,,Sn=n2an-n(n-1),n=1,2,…
(1)證明:數(shù)列{Sn}是等差數(shù)列,并求Sn;
(2)設(shè),求證 :b1+b2+…+bn<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐P—ABC中,PC底面ABC,AB=BC,D、F分別為AC、PC的中點(diǎn),DEAP于E。(1)求證:AP平面BDE;(2)求證:平面BDE平面BDF;(3)若AE:EP=1:2,求截面BEF分三棱錐P—ABC所成上、下兩部分的體積比。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com