【題目】已知橢圓 的左右頂點(diǎn)分別為A,B,點(diǎn)P為橢圓上異于A,B的任意一點(diǎn).
(Ⅰ)求直線PA與PB的斜率之積;
(Ⅱ)過點(diǎn) 作與x軸不重合的任意直線交橢圓E于M,N兩點(diǎn).證明:以MN為直徑的圓恒過點(diǎn)A.

【答案】解:(Ⅰ) .設(shè)點(diǎn)P(x,y)(y≠0),則有 ,即 ,

=

(Ⅱ)證明:設(shè)M(x1,y1),N(x2,y2),

∵M(jìn)N與x軸不重合,

∴設(shè)直線 ,

化簡得,

;

由題意可知△>0成立,且 ;

= ;

代入上式并化簡得,

∴AM⊥AN,即以MN為直徑的圓恒過點(diǎn)A


【解析】(Ⅰ)根據(jù)已知條件得到兩個(gè)直線的斜率再將兩個(gè)式子的乘積轉(zhuǎn)化為已知的形式進(jìn)而求得結(jié)果。(Ⅱ)由已知通過向量數(shù)量積為零證明兩條直線垂直從而得到以MN為直徑的圓恒過直線外的一點(diǎn)A。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=xf(x)+mx在區(qū)間(0,e]上的最大值為﹣3,求m的值;
(3)若x≥1時(shí),有不等式f(x)≥ 恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的函數(shù) 是奇函數(shù).
(1)求a,b的值;
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2﹣3x在x=±1處取得極值
(1)求函數(shù)f(x)的解析式;
(2)求證:對于區(qū)間[﹣1,1]上任意兩個(gè)自變量的值x1 , x2 , 都有|f(x1)﹣f(x2)|≤4;
(3)若過點(diǎn)A(1,m)(m≠﹣2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0(a>0);命題q:實(shí)數(shù)x滿足
(1)若a=1,且“p且q”為真,求實(shí)數(shù)x的取值范圍
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=lnx+ x2
(1)求曲線f(x)在x=1處的切線方程;
(2)設(shè)P為曲線f(x)上的點(diǎn),求曲線C在點(diǎn)P處切線的斜率的最小值及傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c且acosB=4,bsinA=3.
(1)求tanB及邊長a的值;
(2)若△ABC的面積S=9,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知2sinA﹣cosB=2sinBcosC,且角B為鈍角.
(1)求角C的大小;
(2)若a=2,b2+c2﹣a2= bc,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1=
(1)證明:數(shù)列{a2n }是等比數(shù)列;
(2)求a2n及a2n1

查看答案和解析>>

同步練習(xí)冊答案