已知直線與拋物線沒有交點;方程表示橢圓;若為真命題,試求實數(shù)的取值范圍.

試題分析:因為為真命題,所以為真命題且為真命題.命題為真時,直線與拋物線沒有交點.命題為真時,,.綜合得實數(shù)的取值范圍為.本題易錯點為忽視去掉方程為圓的情況.
試題解析:解:因為為真命題,所以為真命題且為真命題        2分
消去
直線與拋物線沒有交點,,解得      6分
方程表示橢圓,則
解得                                   10分
由上可知的取值范圍是                      12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓C:的離心率為,短軸長是2.

(1)求a,b的值;
(2)設橢圓C的下頂點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個交點分別為M,N.設l1的斜率為k(k≠0),△DMN的面積為S,當時,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N(點M在點N的右側),且|MN|=3,已知橢圓D:+=1(a>b>0)的焦距等于2|ON|,且過點(,).

(1)求圓C和橢圓D的方程;
(2)若過點M斜率不為零的直線l與橢圓D交于A、B兩點,求證:直線NA與直線NB的傾斜角互補.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線D的頂點是橢圓C:=1的中心,焦點與該橢圓的右焦點重合.
(1)求拋物線D的方程;
(2)過橢圓C右頂點A的直線l交拋物線D于M、N兩點.
①若直線l的斜率為1,求MN的長;
②是否存在垂直于x軸的直線m被以MA為直徑的圓E所截得的弦長為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在△ABC中,∠ACB=60°,sinA∶sinB=8∶5,則以A、B為焦點且過點C的橢圓的離心率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線2x+y-4=0過橢圓E:的右焦點F2,且與橢圓E在第一象限的交點為M,與y軸交于點N,F(xiàn)1是橢圓E的左焦點,且|MN|=|MF1|,則橢圓E的方程為   .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線y=x與橢圓C:+=1的交點在x軸上的射影恰好是橢圓的焦點,則橢圓C的離心率為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設P為橢圓+=1(a>b>0)上的任意一點,F1為橢圓的一個焦點,則|PF1|的取值范圍為     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

分別為橢圓的左、右焦點,點在橢圓上,若,則點的坐標是__________

查看答案和解析>>

同步練習冊答案