如圖,是的內(nèi)接三角形,PA是圓O的切線,切點(diǎn)為A,PB交AC于點(diǎn)E,交圓O于點(diǎn)D,PA=PE,,PD=1,DB=8.
(1)求的面積;
(2)求弦AC的長(zhǎng).
(1);(2).
解析試題分析:本題主要考查圓的切線的性質(zhì)、切割線定理、勾股定理、三角形面積公式、相交弦定理等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、邏輯推理能力、計(jì)算能力.第一問(wèn),先利用切線的性質(zhì)得到,所以,,所以由切割線定理有,所以利用三角形面積求△的面積為;第二問(wèn),在△中,利用勾股定理得,,再由相交弦定理得出.
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f8/0/1yalq4.png" style="vertical-align:middle;" />是⊙的切線,切點(diǎn)為,
所以, 1分
又,所以, 2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d0/0/p3f6x.png" style="vertical-align:middle;" />,,所以由切割線定理有,所以, 4分
所以△的面積為. 5分
(2)在△中,由勾股定理得 6分
又, ,
所以由相交弦定理得 9分
所以,故. 10分
考點(diǎn):圓的切線的性質(zhì)、切割線定理、勾股定理、三角形面積公式、相交弦定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知圓內(nèi)接四邊形,切圓于點(diǎn),且與四邊形對(duì)角線延長(zhǎng)線交于點(diǎn),切圓O于點(diǎn),且與延長(zhǎng)線交于點(diǎn),延長(zhǎng)交于點(diǎn),若.
(1)求證:;
(2)求證:四點(diǎn)共圓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,△ABC中,AB=AC,AD是中線,P為AD上一點(diǎn),CF∥AB,BP延長(zhǎng)線交AC、CF于E、F,求證:PB2=PE·PF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是外一點(diǎn),是切線,為切點(diǎn),割線與相交于,,為的中點(diǎn),的延長(zhǎng)線交于點(diǎn).證明:
(1);
(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在△ABC中,CD是∠ACB的角平分線,△ADC的外接圓交BC于點(diǎn)E,AB=2AC
(1)求證:BE=2AD;
(2)當(dāng)AC=3,EC=6時(shí),求AD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.
(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=,延長(zhǎng)CE交AB于點(diǎn)F,求△BCF外接圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,PA切圓O于點(diǎn)A,割線PBC交圓O于點(diǎn)B、C,∠APC的角平分線分別與AB、AC相交于點(diǎn)D、E,求證:
(1)AD=AE;
(2)AD2=DB·EC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是圓的直徑,是延長(zhǎng)線上的一點(diǎn),是圓的割線,過(guò)點(diǎn)作的垂線,交直線于點(diǎn),交直線于點(diǎn),過(guò)點(diǎn)作圓的切線,切點(diǎn)為.
(1)求證:四點(diǎn)共圓;(2)若,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
(幾何證明選講選做題)如圖3,PAB、PCD為⊙O的兩條割線,若 PA=5,AB=7,CD=11,,則BD等于 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com