【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出n的值為 . (參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)

【答案】24
【解析】解:模擬執(zhí)行程序,可得 n=6,S=3sin60°= ,
不滿足條件S≥3.10,n=12,S=6×sin30°=3,
不滿足條件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,
滿足條件S≥3.10,退出循環(huán),輸出n的值為24.
故答案為:24.
列出循環(huán)過程中S與n的數(shù)值,滿足判斷框的條件即可結(jié)束循環(huán).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項和為Sn , 已知a1=9,a2為整數(shù),且Sn≤S5
(1)求{an}的通項公式;
(2)設(shè)數(shù)列 的前n項和為Tn , 求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且 =2csinA
(1)確定角C的大;
(2)若c= ,且△ABC的面積為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代有著輝煌的數(shù)學研究成果.《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、…、《輯古算經(jīng)》等算經(jīng)10部專著,有著十分豐富多彩的內(nèi)容,是了解我國古代數(shù)學的重要文獻.這10部專著中有7部產(chǎn)生于魏晉南北朝時期.某中學擬從這10部名著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,則所選2部名著中至少有一部是魏晉南北朝時期的名著的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=aex(a≠0),g(x)=x2(Ⅰ)若曲線c1:y=f(x)與曲線c2:y=g(x)存在公切線,求a最大值.
(Ⅱ)當a=1時,F(xiàn)(x)=f(x)﹣bg(x)﹣cx﹣1,且F(2)=0,若F(x)在(0,2)內(nèi)有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (a∈R)
(1)討論f(x)在(0,+∞)上的單調(diào)性;
(2)若對任意的正整數(shù)[﹣1,1)都有 成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的公差d≠0,其前n項和為Sn , 若S9=99,且a4 , a7 , a12成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若 ,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】祖沖之之子祖暅是我國南北朝時代偉大的科學家,他在實踐的基礎(chǔ)上提出了體積計算的原理:“冪勢既同,則積不容異”.意思是,如果兩個等高的幾何體 在同高處截得的截面面積恒等,那么這兩個幾何體的體積相等.此即祖暅原理.利用這個原理求球的體積時,需要構(gòu)造一個滿足條件的幾何體,已知該幾何體三視圖 如圖所示,用一個與該幾何體的下底面平行相距為 h(0<h<2) 的平面截該幾何體,則截面面積為 ( )


A.
B.
C.
D.π(4-h2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】傳統(tǒng)文化就是文明演化而匯集成的一種反映民族特質(zhì)和風貌的民族文化,是民族歷史上各種思想文化、觀念形態(tài)的總體表征.教育部考試中心確定了2017年普通高考部分學科更注重傳統(tǒng)文化考核.某校為了了解高二年級中國數(shù)學傳統(tǒng)文化選修課的教學效果,進行了一次階段檢測,并從中隨機抽取80名同學的成績,然后就其成績分為A、B、C、D、E五個等級進行數(shù)據(jù)統(tǒng)計如下:

成績

人數(shù)

A

9

B

12

C

31

D

22

E

6

根據(jù)以上抽樣調(diào)查數(shù)據(jù),視頻率為概率.
(1)若該校高二年級共有1000名學生,試估算該校高二年級學生獲得成績?yōu)锽的人數(shù);
(2)若等級A、B、C、D、E分別對應(yīng)100分、80分、60分、40分、20分,學校要求“平均分達60分以上”為“教學達標”,請問該校高二年級此階段教學是否達標?
(3)為更深入了解教學情況,將成績等級為A、B的學生中,按分層抽樣抽取7人,再從中任意抽取3名,求抽到成績?yōu)锳的人數(shù)X的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案