【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=2an﹣2,數(shù)列{bn}滿足b1=1,且bn+1=bn+2.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前2n項和T2n

【答案】
(1)解:當(dāng)n=1,a1=2;

當(dāng)n≥2時,an=Sn﹣Sn1=2an﹣2an1

∴an=2an1

∴{an}是等比數(shù)列,公比為2,首項a1=2,

由bn+1=bn+2,得{bn}是等差數(shù)列,公差為2.

又首項b1=1,

∴bn=2n﹣1


(2)解:

+[3+7+…+(4n﹣1)]

=

=


【解析】(1)當(dāng)n=1,可求a1 , n≥2時,an=Sn﹣Sn1可得an與an1的遞推關(guān)系,結(jié)合等比數(shù)列的通項公式可求an , 由bn+1=bn+2,可得{bn}是等差數(shù)列,結(jié)合等差數(shù)列的通項公式可求bn . (2)由題意可得 ,然后結(jié)合等差數(shù)列與等比數(shù)列的求和公式,利用分組求和即可求解
【考點精析】本題主要考查了數(shù)列的前n項和和數(shù)列的通項公式的相關(guān)知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)+2kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,其中a1=25,a4=16
(1)求{an}的通項;
(2)求a1+a3+a5+…+a19值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A是函數(shù)y=lg(6+5x﹣x2)的定義域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集.p:x∈A,q:x∈B.
(1)若A∩B=,求a的取值范圍;
(2)若¬p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為﹣3.
(1)求f(x)的解析式;
(2)求過點A(2,2)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某上市股票在30天內(nèi)每股的交易價格P(元)與時間t(天)組成有序數(shù)對(t,P),點(t,P)落在圖中的兩條線段上(如圖).該股票在30天內(nèi)(包括第30天)的日交易量Q(萬股)與時間t(天)的函數(shù)關(guān)系式為Q=40﹣t(0≤t≤30且t∈N).
(1)根據(jù)提供的圖象,求出該種股票每股的交易價格P(元)與時間t(天)所滿足的函數(shù)關(guān)系式;
(2)用y(萬元)表示該股票日交易額(日交易額=日交易量×每股的交易價格),寫出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾天日交易額最大,最大值為多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形垂直于正方形垂直于平面.且

(1)求三棱錐的體積;

(2)求證:面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在五面體中, , , ,平面平面.

(1)證明:直線平面;

(2)已知為棱上的點,試確定點位置,使二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求曲線在點處的切線的方程;

(2)若不等式 對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案