【題目】橢圓的左、右焦點分別為,橢圓上一點的距離之和為,且焦距是短軸長的2.

1)求橢圓的方程;

2)過線段上一點的直線(斜率不為0)與橢圓相交于,兩點,當(dāng)的面積與的面積之比為時,求面積的最大值.

【答案】1;(2

【解析】

1)由題意結(jié)合橢圓的定義可得,再由求得后,即可得解;

2)轉(zhuǎn)化條件得直線過定點,設(shè)直線的方程為,,,聯(lián)立方程組利用韋達(dá)定理可得的面積,換元后利用二次函數(shù)的性質(zhì)即可得解.

1)由題可知.

,所以,

所以,所以,解得(舍去),

從而橢圓的方程為;

2)由題意可得,,

因為的面積與的面積之比為13,所以直線過定點,

設(shè)直線的方程為,,

聯(lián)立,

所以,

所以的面積

.

設(shè),則,

所以

所以當(dāng)時,最大,最大值為,

所以面積的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點恰好是雙曲線的一個焦點,且兩條曲線交點的連線過點,則該雙曲線的離心率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一枚棋子放在一個的棋盤上,記為從左、上數(shù)第行第列的小方格,求所有的四元數(shù)組,使得從出發(fā),經(jīng)過每個小方格恰一次到達(dá)(每步為將棋子從一個小方格移到與之有共同邊的另一個小方格).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題方程表示雙曲線命題不等式的解集是. 為假 為真,的取值范圍.

【答案】

【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.

試題解析:

范圍為

型】解答
結(jié)束】
18

【題目】如圖,設(shè)是圓上的動點軸上的投影, 上一點.

1)當(dāng)在圓上運動時,求點的軌跡的方程;

2)求過點且斜率為的直線被所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一個三角形的邊長與面積都是整數(shù),則稱為“海倫三角形”;三邊長互質(zhì)的海倫三角形,稱為“本原海倫三角形”;邊長都不是3的倍數(shù)的本原海倫三角形,稱為“奇異三角形”.

(1)求奇異三角形的最小邊長的最小值;

(2)求證:等腰的奇異三角形有無數(shù)個;

(3)問:非等腰的奇異三角形有多少個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是否存在常數(shù)a,b,c,使等式N+都成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球運動員的投籃命中率為,他想提高自己的投籃水平,制定了一個夏季訓(xùn)練計劃為了了解訓(xùn)練效果,執(zhí)行訓(xùn)練前,他統(tǒng)計了10場比賽的得分,計算出得分的中位數(shù)為15分,平均得分為15分,得分的方差為執(zhí)行訓(xùn)練后也統(tǒng)計了10場比賽的得分,成績莖葉圖如圖所示:

請計算該籃球運動員執(zhí)行訓(xùn)練后統(tǒng)計的10場比賽得分的中位數(shù)、平均得分與方差;

如果僅從執(zhí)行訓(xùn)練前后統(tǒng)計的各10場比賽得分?jǐn)?shù)據(jù)分析,你認(rèn)為訓(xùn)練計劃對該運動員的投籃水平的提高是否有幫助?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中,底面是邊長為的正方形,對角線相交于點,點在線段上,且,與底面所成角為.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)某市2011年新建住房400m2,其中250m2是中低價房,預(yù)計在今后的若干年內(nèi),該市每年新建住房面積平均比上一年增長8%.另外,每年新建住房中,中低價房的面積比上一年增加50m2,那么到哪一年底,

1)該市歷年所建中低價房的累計面積(以2011年為累計的第一年)將首次不少于4750m2?

2)當(dāng)年建造的中低價房的面積占該年建造住房面積的比例首次大于85%

查看答案和解析>>

同步練習(xí)冊答案