【題目】已知f(x)= sinxcosx+cos2x,銳角△ABC的三個(gè)角A,B,C所對(duì)的邊分別為a,b,c. (Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若f(C)=1,求m= 的取值范圍.

【答案】解:(Ⅰ) .∴函數(shù)f(x)的最小正周期
是單調(diào)遞增,
解得:
∴函數(shù)f(x)的單調(diào)遞增區(qū)間 ,最小正周期為π.
(Ⅱ)由(Ⅰ)可得f(C)=sin(2C+ )=1


k∈Z,
∵△ABC是銳角三角形,

由余弦定理c2=a2+b2﹣2abcosC,可得c2=a2+b2﹣ab

∵△ABC為銳角三角形

由正弦定理得:

【解析】(Ⅰ)將f(x)化簡,結(jié)合三角函數(shù)的性質(zhì)求解即可.(Ⅱ)利用f(C)=1,求解角C,由余弦定理建立等式關(guān)系,利用三角函數(shù)的有界限求解范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是( )

A. 有兩個(gè)面平行,其余各面都是四邊形的幾何體叫棱柱

B. 有兩個(gè)面平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行的幾何體叫棱柱

C. 用一個(gè)平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺(tái)

D. 有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題 ,命題 .

1)若,求實(shí)數(shù)的值;

2)若的充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若以直角坐標(biāo)系xOy的O為極點(diǎn),Ox為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程是ρ=
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并指出曲線是什么曲線;
(2)若直線l的參數(shù)方程為 (t為參數(shù))當(dāng)直線l與曲線C相交于A,B兩點(diǎn),求| |

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2分別為橢圓C1 (a>b>0)的上下焦點(diǎn),其F1是拋物線C2:x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=
(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t)(t≠0)交橢圓于A,B兩點(diǎn),若橢圓上一點(diǎn)P滿足 ,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sinωx(>0)的圖象向右平移 個(gè)單位得到函數(shù)y=g(x)的圖象,并且函數(shù)g(x)在區(qū)間[ , ]上單調(diào)遞增,在區(qū)間[ ]上單調(diào)遞減,則實(shí)數(shù)ω的值為(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求在區(qū)間上的取值范圍.

)當(dāng)時(shí),,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為 (α為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+ )= .l與C交于A、B兩點(diǎn). (Ⅰ)求曲線C的普通方程及直線l的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)P(0,﹣2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.點(diǎn)E是棱PC的中點(diǎn),平面ABE與棱PD交于點(diǎn)F. (Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF與平面AFE所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案