【題目】下列四個結論中:
(1)如果兩個函數都是增函數,那么這兩個函數的積運算所得函數為增函數;
(2)奇函數f(x)在[0,+∞)上是增函數,則f(x)在R上為增函數;
(3)既是奇函數又是偶函數的函數只有一個;
(4)若函數f(x)的最小值是a,最大值是b,則f(x)值域為[a,b].
其中正確結論的序號為 .
【答案】(2)
【解析】解:(1),當x∈(0,+∞)時,y=x與y=﹣ 均為增函數,但這兩個函數的積運算所得函數為y=x(﹣ )=﹣1不是增函數(為常函數),故(1)錯誤;(2)奇函數f(x)在[0,+∞)上是增函數,則f(x)在(﹣∞,0)上也是增函數,故在R上為增函數,(2)正確;(3)既是奇函數又是偶函數的函數只有一個,錯誤.如x∈(﹣1,1)時,f(x)=0既是奇函數又是偶函數的函數;f(x)= + 既是奇函數又是偶函數的函數,故(3)錯誤;(4)若a<b,函數f(x)= ,即函數f(x)的最小值是a,最大值是b,則f(x)值域為{a,b},而不是[a,b],故(4)錯誤.
所以答案是:(2).
【考點精析】本題主要考查了命題的真假判斷與應用的相關知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點.求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】A={x|x2﹣2x﹣8<0},B={x|x2+2x﹣3>0},C={x|x2﹣3ax+2a2<0},
(1)求A∩B.
(2)試求實數a的取值范圍,使C(A∩B).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產品的研發(fā)投入,已知研發(fā)投入 (十萬元)與利潤 (百萬元)之間有如下對應數據:
2 | 3 | 4 | 5 | 6 | |
2 | 4 | 5 | 6 | 7 |
若由資料知對呈線性相關關系。試求:
(1)線性回歸方程;
(2)估計時,利潤是多少?
附:利用“最小二乘法”計算a,b的值時,可根據以下公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=ax﹣1(a>0,且a≠1).
(1)求f(2)+f(﹣2)的值;
(2)求f(x)的解析式;
(3)解關于x的不等式f(x)<4,結果用集合或區(qū)間表示.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一汽車廠生產A,B,C三類轎車,每類轎車均有舒適型和標準型兩種型號,某月產量如表(單位:輛):
轎車A | 轎車B | 轎車C | |
舒適型 | 100 | 150 | z |
標準型 | 300 | 450 | 600 |
按類型分層抽樣的方法在這個月生產的轎車中抽取50輛,其中有A類轎車10輛。
(1)求z的值;
(2)用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本。將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列各組函數中,表示同一函數的是( )
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=|x|,g(x)=( )2
C.f(x)=x,g(x)=
D.f(x)=2x,g(x)=
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】解答
(1)已知冪函數f(x)=(﹣2m2+m+2)x﹣2m+1為偶函數,求函數f(x)的解析式;
(2)已知x+x﹣1=3(x>1),求x2﹣x﹣2的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com