【題目】設(shè)甲乙兩地相距100海里,船從甲地勻速駛到乙地,已知某船的最大船速是36海里/時(shí):當(dāng)船速不大于每小時(shí)30海里/時(shí),船每小時(shí)使用的燃料費(fèi)用和船速成正比;當(dāng)船速不小于每小時(shí)30海里/時(shí),船每小時(shí)使用的燃料費(fèi)用和船速的平方成正比;當(dāng)船速為30海里/時(shí),它每小時(shí)使用的燃料費(fèi)用為300元;其余費(fèi)用(不論船速為多少)都是每小時(shí)480元;

1)試把每小時(shí)使用的燃料費(fèi)用P(元)表示成船速v(海里/時(shí))的函數(shù);

2)試把船從甲地行駛到乙地所需要的總費(fèi)用Y表示成船速v的函數(shù);

3)當(dāng)船速為每小時(shí)多少海里時(shí),船從甲地到乙地所需要的總費(fèi)用最少?

【答案】(1)(2)(3)當(dāng)時(shí),Y有最小值為(元)

【解析】

1)分類討論,當(dāng)時(shí),設(shè),從而解得;再求當(dāng)時(shí)的解析式即可;

2)分類討論求總費(fèi)用的值,從而利用分段函數(shù)寫出即可;

3)由分段函數(shù)討論以確定函數(shù)的單調(diào)性,從而由單調(diào)性求最小值即可.

解:(1)由題意,當(dāng)時(shí),設(shè)

解得,

,

當(dāng)時(shí),設(shè)

解得,;

2)當(dāng)時(shí),

當(dāng)時(shí),

;

;

3)當(dāng)時(shí),是減函數(shù),

當(dāng)時(shí),,

當(dāng)時(shí),

則當(dāng)時(shí),故上是減函數(shù);

上是減函數(shù),

故當(dāng)時(shí),有最小值為(元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知為等邊三角形,為等腰直角三角形,,平面平面ABD,點(diǎn)E與點(diǎn)D在平面ABC的同側(cè),且.點(diǎn)FAD中點(diǎn),連接EF.

1)求證:平面ABC;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若為單調(diào)函數(shù),求a的取值范圍;

2)若函數(shù)僅一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為整數(shù),其前n項(xiàng)和為Sn.規(guī)定:若數(shù)列{an}滿足前r項(xiàng)依次成公差為1的等差數(shù)列,從第r﹣1項(xiàng)起往后依次成公比為2的等比數(shù)列,則稱數(shù)列{an}“r關(guān)聯(lián)數(shù)列

1)若數(shù)列{an}“6關(guān)聯(lián)數(shù)列,求數(shù)列{an}的通項(xiàng)公式;

2)在(1)的條件下,求出Sn,并證明:對(duì)任意n∈N*anSn≥a6S6;

3)已知數(shù)列{an}“r關(guān)聯(lián)數(shù)列,且a1=﹣10,是否存在正整數(shù)k,mmk),使得a1+a2+…+ak1+ak=a1+a2+…+am1+am?若存在,求出所有的k,m值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4正方體中,的中點(diǎn),,點(diǎn)在正方體表面上移動(dòng),且滿足,則點(diǎn)和滿足條件的所有點(diǎn)構(gòu)成的圖形的面積是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的奇函數(shù),當(dāng)時(shí),,當(dāng)時(shí),,若直線與函數(shù)的圖象恰有11個(gè)不同的公共點(diǎn),則實(shí)數(shù)的取值范圍為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,設(shè).

(Ⅰ)試確定t的取值范圍,使得函數(shù)上為單調(diào)函數(shù);

(Ⅱ)求證:;

(Ⅲ)求證:對(duì)于任意的,總存在,滿足,又若方程上有唯一解,請(qǐng)確定t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐PABCD中,底面ABCD是邊長(zhǎng)為2的菱形,側(cè)面PAD⊥底面ABCD,∠BCD60°,,EBC中點(diǎn),點(diǎn)Q在側(cè)棱PC上.

(Ⅰ)求證:ADPB;

(Ⅱ)若QPC中點(diǎn),求二面角EDQC的余弦值;

(Ⅲ)是否存在Q,使PA∥平面DEQ?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】田忌賽馬是《史記》中記載的一個(gè)故事,說(shuō)的是齊國(guó)大將軍田忌經(jīng)常與齊國(guó)眾公子賽馬,孫臏發(fā)現(xiàn)田忌的馬和其他人的馬相差并不遠(yuǎn),都分為上、中、下三等.于是孫臏給田忌將軍獻(xiàn)策:比賽即將開始時(shí),他讓田忌用下等馬對(duì)戰(zhàn)公子們的上等馬,用上等馬對(duì)戰(zhàn)公子們的中等馬,用中等馬對(duì)戰(zhàn)公子們的下等馬,從而使田忌贏得了許多賭注.假設(shè)田忌的各等級(jí)馬與某公子的各等級(jí)馬進(jìn)行一場(chǎng)比賽,田忌獲勝的概率如下表所示:

比賽規(guī)則規(guī)定:一次比賽由三場(chǎng)賽馬組成,每場(chǎng)由公子和田忌各出一匹馬參賽,結(jié)果只有勝和負(fù)兩種,并且毎一方三場(chǎng)賽馬的馬的等級(jí)各不相同,三場(chǎng)比賽中至少獲勝兩場(chǎng)的一方為最終勝利者.

1)如果按孫臏的策略比賽一次,求田忌獲勝的概率;

2)如果比賽約定,只能同等級(jí)馬對(duì)戰(zhàn),每次比賽賭注1000,即勝利者贏得對(duì)方1000,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案