【題目】如圖,已知為等邊三角形,為等腰直角三角形,,平面平面ABD,點(diǎn)E與點(diǎn)D在平面ABC的同側(cè),且,.點(diǎn)FAD中點(diǎn),連接EF.

1)求證:平面ABC;

2)求二面角的余弦值.

【答案】1)見解析;(2

【解析】

1)取AB中點(diǎn)為O,連接OC、OF,證明四邊形OCEF為平行四邊形,EFOC,然后證明EF∥平面ABC

2)以O為坐標(biāo)原點(diǎn),分別以、的方向?yàn)?/span>xy、z軸正方向,建立空間直角坐標(biāo)系.不妨令正三角形ABC的邊長為2,求出相關(guān)的的坐標(biāo),求出平面AEC的法向量,平面AED的法向量,取法向量的方向一進(jìn)一出,利用空間向量的公式求解即可.

1)證明:取AB中點(diǎn)為O,連接OCOF,∵OF分別為AB、AD中點(diǎn),

OFBDBD2OF,又CEBDBD2CE,∴CEOFCEOF,∴四邊形OCEF為平行四邊形,∴EFOC

OC平面ABCEF平面ABC,∴EF∥平面ABC

2)∵三角形ABC為等邊三角形,OAB中點(diǎn),∴OCAB,∵平面ABC⊥平面ABD且平面ABC∩平面ABDAB

BDABBD平面ABD,∴BD⊥平面ABC,又OFBD,∴OF⊥平面ABC,

O為坐標(biāo)原點(diǎn),分別以、、的方向?yàn)?/span>x、yz軸正方向,建立空間直角坐標(biāo)系.

不妨令正三角形ABC的邊長為2,則O0,00),A1,0,0),,D(﹣1,0,2),

,設(shè)平面AEC的法向量為,則

不妨令,則,

設(shè)平面AED的法向量為,

,

∴所求二面角CAED的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足

①存在可以生成的數(shù)列是常數(shù)數(shù)列;

②“數(shù)列中存在某一項(xiàng)”是“數(shù)列為有窮數(shù)列”的充要條件;

③若為單調(diào)遞增數(shù)列,則的取值范圍是

④只要,其中,則一定存在;

其中正確命題的序號為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),C、D兩點(diǎn)的坐標(biāo)為,曲線上的動點(diǎn)P滿足.又曲線上的點(diǎn)AB滿足.

1)求曲線的方程;

2)若點(diǎn)A在第一象限,且,求點(diǎn)A的坐標(biāo);

3)求證:原點(diǎn)到直線AB的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列 的前項(xiàng)和為,對一切,點(diǎn)都在函數(shù)的圖象上.

1)求,歸納數(shù)列的通項(xiàng)公式(不必證明);

2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為, ;,,,,分別計(jì)算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,求的值;

3)設(shè)為數(shù)列的前項(xiàng)積,若不等式對一切都成立,其中,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

1)當(dāng)時(shí),求方程的根的個數(shù);

2)若恒成立,求的取值范圍.

注: 為自然對數(shù)的底數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)在“精準(zhǔn)扶貧”行動中,決定幫助一貧困山區(qū)將水果運(yùn)出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運(yùn)6噸且每天能運(yùn)4次,乙型車每次最多能運(yùn)10噸且每天能運(yùn)3次,甲型車每天費(fèi)用320元,乙型車每天費(fèi)用504元.若需要一天內(nèi)把180噸水果運(yùn)輸?shù)交疖囌荆瑒t通過合理調(diào)配車輛運(yùn)送這批水果的費(fèi)用最少為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為。我們將其結(jié)論推廣:橢圓上的點(diǎn)處的切線方程為,在解本題時(shí)可以直接應(yīng)用。已知,直線與橢圓有且只有一個公共點(diǎn).

(1)求的值;

(2)設(shè)為坐標(biāo)原點(diǎn),過橢圓上的兩點(diǎn)、分別作該橢圓的兩條切線,且交于點(diǎn)。當(dāng)變化時(shí),求面積的最大值;

(3)在(2)的條件下,經(jīng)過點(diǎn)作直線與該橢圓交于、兩點(diǎn),在線段上存在點(diǎn),使成立,試問:點(diǎn)是否在直線上,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且,.

1)計(jì)算,,,,并求數(shù)列的通項(xiàng)公式;

2)若數(shù)列滿足,求證:數(shù)列是等比數(shù)列;

3)由數(shù)列的項(xiàng)組成一個新數(shù)列,,,,,設(shè)為數(shù)列的前項(xiàng)和,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲乙兩地相距100海里,船從甲地勻速駛到乙地,已知某船的最大船速是36海里/時(shí):當(dāng)船速不大于每小時(shí)30海里/時(shí),船每小時(shí)使用的燃料費(fèi)用和船速成正比;當(dāng)船速不小于每小時(shí)30海里/時(shí),船每小時(shí)使用的燃料費(fèi)用和船速的平方成正比;當(dāng)船速為30海里/時(shí),它每小時(shí)使用的燃料費(fèi)用為300元;其余費(fèi)用(不論船速為多少)都是每小時(shí)480元;

1)試把每小時(shí)使用的燃料費(fèi)用P(元)表示成船速v(海里/時(shí))的函數(shù);

2)試把船從甲地行駛到乙地所需要的總費(fèi)用Y表示成船速v的函數(shù);

3)當(dāng)船速為每小時(shí)多少海里時(shí),船從甲地到乙地所需要的總費(fèi)用最少?

查看答案和解析>>

同步練習(xí)冊答案