.選做題(考生注意:請?jiān)贏,B兩題中,任選做一題作答,若多做,則按A題記分)
A.若集合,則實(shí)數(shù)的取值范圍是      ;
B.已知直線與圓相交于AB,則以AB為直徑的圓的面積為      .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線為參數(shù))與圓(為參數(shù))的位置關(guān)系是(    )
A.相離B.相切C.過圓心D.相交不過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為為參數(shù))曲線C2的參數(shù)方程為,為參數(shù))在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=與C1,C2各有一個(gè)交點(diǎn).當(dāng)=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng)=時(shí),這兩個(gè)交點(diǎn)重合.
(1)分別說明C1,C2是什么曲線,并求出a與b的值;
(2)設(shè)當(dāng)=時(shí),l與C1,C2的交點(diǎn)分別為A1,B1,當(dāng)=-時(shí),l與C1,C2的交點(diǎn)為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知P(x,y)是圓x2+y2=2y上的動(dòng)點(diǎn).
(1)求2x+y的取值范圍;
(2)若x+y+c>0恒成立,求實(shí)數(shù)c的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程
如圖,已知點(diǎn),,圓是以為直徑的圓,直線為參數(shù)).

(Ⅰ)寫出圓的普通方程并選取適當(dāng)?shù)膮?shù)改寫為參數(shù)方程;
(Ⅱ)過原點(diǎn)作直線的垂線,垂足為,若動(dòng)點(diǎn)滿足,當(dāng)變化時(shí),求點(diǎn)軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.在中,已知,且,則的軌跡方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,分別為曲線軸,軸的交點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程,并求出的極坐標(biāo);
(2)設(shè)的中點(diǎn)為,求直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)F(2,0),點(diǎn)P在y 軸上運(yùn)動(dòng),過P作PM⊥PF交x軸于M,延長MP到點(diǎn)N,使|PN|=|PM|.
⑵ 求動(dòng)點(diǎn)N的軌跡C的方程;
⑵在⑴中所求的曲線C上有三點(diǎn)A(x1,y1),B(x2,y2),D(x3,y3),若|AF|、|BF|、|DF|成等差數(shù)列,且線段AD的中垂線與x軸的交點(diǎn)為(6,0),求點(diǎn)B的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做)
在極坐標(biāo)系中,點(diǎn)到直線的距離為        

查看答案和解析>>

同步練習(xí)冊答案