【題目】某高中三年級(jí)有AB兩個(gè)班,各有50名同學(xué),這兩個(gè)班參加能力測(cè)試,成績(jī)統(tǒng)計(jì)結(jié)果如表:
AB班成績(jī)的頻數(shù)分布表
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
A班頻數(shù) | 4 | 8 | 23 | 9 | 6 |
B班頻數(shù) | 7 | 12 | 13 | 10 | 8 |
(1)試估計(jì)AB兩個(gè)班的平均分;
(2)統(tǒng)計(jì)學(xué)中常用M值作為衡量總體水平的一種指標(biāo),已知M與分?jǐn)?shù)t的關(guān)系式為:M.
分別求這兩個(gè)班學(xué)生成績(jī)的M總值,并據(jù)此對(duì)這兩個(gè)班的總體水平作簡(jiǎn)單評(píng)價(jià).
【答案】(1)A=76,B=75 (2)見(jiàn)解析
【解析】
(1)取每組區(qū)間的中值作為該組的成績(jī),求出成績(jī)總和,即可得出結(jié)論;
(2)分別統(tǒng)計(jì)出兩個(gè)班在[50,60),[60,80) ,[80,100]的人數(shù),結(jié)合與分?jǐn)?shù)的關(guān)系,即可求解.
(1)估計(jì)A班平均分為:
(4×55+8×65+23×75+9×85+6×95)=76,
B班平均分為:(7×55+12×65+13×75+10×85+8×95)=75.
(2)A班學(xué)生成績(jī)的M總值為: MA=﹣2×4+2×(8+23)+4×(9+6)=114,
B班學(xué)生成績(jī)的M總值為: MB=﹣2×7+2×(12+13)+4×(10+8)=108,
∵MA>MB,∴A班總體水平好于B班.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義在上的函數(shù),有下述命題:①若是奇函數(shù),則的圖象關(guān)于點(diǎn)對(duì)稱(chēng);②函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),則為偶函數(shù);③若對(duì),有,則2是的一個(gè)周期;④函數(shù)與的圖象關(guān)于直線對(duì)稱(chēng).其中正確的命題是______.(寫(xiě)出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)的某批產(chǎn)品的銷(xiāo)售量萬(wàn)件(生產(chǎn)量與銷(xiāo)售量相等)與促銷(xiāo)費(fèi)用萬(wàn)元滿(mǎn)足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬(wàn)元(不含促銷(xiāo)費(fèi)用),產(chǎn)品的銷(xiāo)售價(jià)格定為元件.
(1)將該產(chǎn)品的利潤(rùn)萬(wàn)元表示為促銷(xiāo)費(fèi)用萬(wàn)元的函數(shù);
(2)促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),該公司的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器專(zhuān)賣(mài)店銷(xiāo)售某種型號(hào)的空調(diào),記第天(,)的日銷(xiāo)售量為(單位;臺(tái)).函數(shù)圖象中的點(diǎn)分別在兩條直線上,如圖,該兩直線交點(diǎn)的橫坐標(biāo)為,已知時(shí),函數(shù).
(1)當(dāng)時(shí),求函數(shù)的解析式;
(2)求的值及該店前天此型號(hào)空調(diào)的銷(xiāo)售總量;
(3)按照經(jīng)驗(yàn)判斷,當(dāng)該店此型號(hào)空調(diào)的銷(xiāo)售總量達(dá)到或超過(guò)臺(tái),且日銷(xiāo)售量仍持續(xù)增加時(shí),該型號(hào)空調(diào)開(kāi)始旺銷(xiāo),問(wèn)該店此型號(hào)空調(diào)銷(xiāo)售到第幾天時(shí),才可被認(rèn)為開(kāi)始旺銷(xiāo)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(本題滿(mǎn)分15分)已知m>1,直線,
橢圓,分別為橢圓的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過(guò)右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),,
的重心分別為.若原點(diǎn)在以線段
為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列和滿(mǎn)足:,,且對(duì)一切,均有.
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)設(shè),記數(shù)列的前項(xiàng)和為,求正整數(shù),使得對(duì)任意,均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰梯形中,,,E為CD中點(diǎn),將沿AE折到的位置.
(1)證明:;
(2)當(dāng)折疊過(guò)程中所得四棱錐體積取最大值時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列,滿(mǎn)足:對(duì)任意正整數(shù),都有,,成等差數(shù)列,,,成等比數(shù)列,且,.
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列,的通項(xiàng)公式;
(Ⅲ)設(shè)=++…+,如果對(duì)任意的正整數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com