分析 (1)由向量垂直的充要條件可得$\sqrt{3}$sinx-cosx=0,變形可得tanx的值;
(2)根據平面向量數量積的運算、輔助角公式將函數f(x)轉化為正弦函數,結合正弦函數圖象的性質解答.
解答 解:(1)因為$\overrightarrow a⊥\overrightarrow b$,所以$\overrightarrow a•\overrightarrow b=0$,
即$\sqrt{3}sinx-cosx=0$,則$tanx=\frac{sinx}{cosx}=\frac{{\sqrt{3}}}{3}$.
(2)$f(x)=\overrightarrow a•\overrightarrow b=\sqrt{3}sinx-cosx$,
$\begin{array}{l}=2(\frac{{\sqrt{3}}}{2}sinx-\frac{1}{2}cosx)\\=2(sinxcos\frac{π}{6}-cosxsin\frac{π}{6})\end{array}$
=$2sin(x-\frac{π}{6})$,
所以,函數f(x)的最小正周期為2π,最大值是2.
點評 本題主要考查三角函數的恒等變換及化簡求值,三角函數的周期性和求法,平面向量數量積的運算,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 5 | C. | 4 | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 18 | B. | 12 | C. | 7 | D. | 24 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{16}{25}$. | B. | $\frac{9}{16}$ | C. | $\frac{36}{61}$ | D. | $\frac{20}{61}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com