【題目】已知橢圓 離心率等于,、是橢圓上的兩點(diǎn).
(1)求橢圓的方程;
(2)是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).當(dāng)運(yùn)動(dòng)時(shí),滿足,試問直線的斜率是否為定值?如果為定值,請求出此定值;如果不是定值,請說明理由.
【答案】(1);(2)定點(diǎn)
【解析】
(1)由題意列式關(guān)于a,b,c的方程組,求解可得a,b的值,則橢圓C的方程可求;
(2)設(shè)直線PA的斜率為k,則PB的斜率為﹣k,PA的直線方程為y﹣3=k(x﹣2)將直線的方程代入橢圓的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用弦長公式即可求得x1+2,同理PB的直線方程為y﹣3=﹣k(x﹣2),可得x2+2,從而得出AB的斜率為定值.
解:(1)由題意可得,解得a=4,b,c=2.
∴橢圓C的方程為;
(2)設(shè)A(x1,y1),B(x2,y2),
當(dāng)∠APQ=∠BPQ,則PA、PB的斜率之和為0,設(shè)直線PA的斜率為k,
則PB的斜率為﹣k,直線PA的直線方程為y﹣3=k(x﹣2),
聯(lián)立,得(3+4k2)x2+8k(3﹣2k)x+4(3﹣2k)2﹣48=0.
∴.
同理直線PB的直線方程為y﹣3=﹣k(x﹣2),
可得.
∴,,
,
∴AB的斜率為定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲烷分子由一個(gè)碳原子和四個(gè)氫原子組成,其空間構(gòu)型為一個(gè)各條棱都相等的四面體,四個(gè)氫原子分別位于該四面體的四個(gè)頂點(diǎn)上,碳原子位于該四面體的中心,它與每個(gè)氫原子的距離都是,若將碳原子和氫原子均視為一個(gè)點(diǎn),則任意兩個(gè)氫原子之間的距離為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn).若直與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:3x﹣y﹣1=0,l2:x+2y﹣5=0,l3:x﹣ay﹣3=0不能圍成三角形,則實(shí)數(shù)a的取值可能為( )
A.1B.C.﹣2D.﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解學(xué)生使用手機(jī)的情況,分別在高一和高二兩個(gè)年級各隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均使用手機(jī)時(shí)間的頻數(shù)分布表和頻率分布直方圖,將使用手機(jī)時(shí)間不低于80分鐘的學(xué)生稱為“手機(jī)迷”.
(I)將頻率視為概率,估計(jì)哪個(gè)年級的學(xué)生是“手機(jī)迷”的概率大?請說明理由.
(II)在高二的抽查中,已知隨機(jī)抽到的女生共有55名,其中10名為“手機(jī)迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認(rèn)為“手機(jī)迷”與性別有關(guān)?
非手機(jī)迷 | 手機(jī)迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
附:隨機(jī)變量(其中為樣本總量).
參考數(shù)據(jù) | 0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù),當(dāng)時(shí),若是的唯一極值點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計(jì)學(xué)的角度(平均數(shù)、方差)考慮,你認(rèn)為選派哪位同學(xué)參加合適?請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則以下結(jié)論正確的是( )
A.函數(shù)的單調(diào)減區(qū)間是
B.函數(shù)有且只有1個(gè)零點(diǎn)
C.存在正實(shí)數(shù),使得成立
D.對任意兩個(gè)正實(shí)數(shù),,且,若則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為的樣本,得到一周參加社區(qū)服務(wù)的時(shí)間的統(tǒng)計(jì)數(shù)據(jù)好下表:
超過1小時(shí) | 不超過1小時(shí) | |
男 | 20 | 8 |
女 | 12 | m |
(Ⅰ)求,;
(Ⅱ)能否有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過1小時(shí)與性別有關(guān)?
(Ⅲ)以樣本中學(xué)生參加社區(qū)服務(wù)時(shí)間超過1小時(shí)的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機(jī)調(diào)查6名學(xué)生,試估計(jì)6名學(xué)生中一周參加社區(qū)服務(wù)時(shí)間超過1小時(shí)的人數(shù).
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com