已知直線y=-2上有一個動點(diǎn)Q,過點(diǎn)Q作直線l1垂直于x軸,動點(diǎn)P在l1上,且滿足OP⊥OQ(O為坐標(biāo)原點(diǎn)),記點(diǎn)P的軌跡為C.
(1)求曲線C的方程.
(2)若直線l2是曲線C的一條切線,當(dāng)點(diǎn)(0,2)到直線l2的距離最短時,求直線l2的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線C1:x2+by=b2經(jīng)過橢圓C2:+=1(a>b>0)的兩個焦點(diǎn).
(1)求橢圓C2的離心率;
(2)設(shè)點(diǎn)Q(3,b),又M,N為C1與C2不在y軸上的兩個交點(diǎn),若△QMN的重心在拋物線C1上,求C1和C2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓過點(diǎn)P(1, ),其左、右焦點(diǎn)分別為F1,F2,離心率e=,M,N是直線x=4上的兩個動點(diǎn),且·=0.
(1)求橢圓的方程;
(2)求|MN|的最小值;
(3)以MN為直徑的圓C是否過定點(diǎn)?請證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)動點(diǎn)P(x,y)(x≥0)到定點(diǎn)F的距離比到y(tǒng)軸的距離大.記點(diǎn)P的軌跡為曲線C.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M在y軸上截得的弦,當(dāng)M運(yùn)動時弦長BD是否為定值?說明理由;
(3)過F作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形GRHS面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓C:=1(a>b>0)的左、右焦點(diǎn)分別是F1、F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上除長軸端點(diǎn)外的任一點(diǎn),過點(diǎn)P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點(diǎn).設(shè)直線PF1,PF2的斜率分別為k1,k2.若k≠0,試證明+為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知線段AB的兩個端點(diǎn)A,B分別在x軸、y軸上滑動,|AB|=3,點(diǎn)M滿足2=.
(1)求動點(diǎn)M的軌跡E的方程.
(2)若曲線E的所有弦都不能被直線l:y=k(x-1)垂直平分,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的離心率,原點(diǎn)到過點(diǎn),的直線的距離是.
(1)求橢圓的方程;
(2)若橢圓上一動點(diǎn)關(guān)于直線的對稱點(diǎn)為,求 的取值范圍;
(3)如果直線交橢圓于不同的兩點(diǎn),,且,都在以為圓心的圓上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn),且離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為,且滿足,試判斷直線是否過定點(diǎn),若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題:方程表示焦點(diǎn)在y軸上的橢圓;
命題:雙曲線的離心率,若或為真命題,且為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com