如圖,已知拋物線C1:x2+by=b2經過橢圓C2:+=1(a>b>0)的兩個焦點.
(1)求橢圓C2的離心率;
(2)設點Q(3,b),又M,N為C1與C2不在y軸上的兩個交點,若△QMN的重心在拋物線C1上,求C1和C2的方程.
(1) (2)x2+y=1 +y2=1
解析解:(1)因為拋物線C1經過橢圓C2的兩個焦點F1(-c,0),F2(c,0),
所以c2+b×0=b2,
即c2=b2.
又a2=b2+c2=2c2,
所以橢圓C2的離心率e=.
(2)由(1)可知a2=2b2,
橢圓C2的方程為+=1.
聯(lián)立拋物線C1的方程x2+by=b2,
得2y2-by-b2=0,
解得y=-或y=b(舍去),
所以x=±b,
即M(b,-),N(b,-),
所以△QMN的重心坐標為(1,0).
因為重心在C1上,
所以12+b×0=b2,得b=1.
所以a2=2.
所以拋物線C1的方程為x2+y=1,
橢圓C2的方程為+y2=1.
科目:高中數學 來源: 題型:解答題
已知橢圓的左、右焦點分別為、, 焦距為2,過作垂直于橢圓長軸的弦長為3
(1)求橢圓的方程;
(2)若過點的動直線交橢圓于A、B兩點,判斷是否存在直線使得為鈍角,若存在,求出直線的斜率的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓經過點,離心率,直線的方程為.
(1)求橢圓的方程;
(2)是經過右焦點的任一弦(不經過點),設直線與直線相交于點,記的斜率分別為.問:是否存在常數,使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知是橢圓的兩個焦點,為坐標原點,點在橢圓上,且,⊙是以為直徑的圓,直線:與⊙相切,并且與橢圓交于不同的兩點
(1)求橢圓的標準方程;
(2)當,且滿足時,求弦長的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知點D(0,-2),過點D作拋物線:的切線l,切點A在第二象限。
(1)求切點A的縱坐標;
(2)若離心率為的橢圓恰好經過A點,設切線l交橢圓的另一點為B,若設切線l,直線OA,OB的斜率為k,,①試用斜率k表示②當取得最大值時求此時橢圓的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓E:+=1(a>b>0),以拋物線y2=8x的焦點為頂點,且離心率為.
(1)求橢圓E的方程;
(2)若F為橢圓E的左焦點,O為坐標原點,直線l:y=kx+m與橢圓E相交于A、B兩點,與直線x=-4相交于Q點,P是橢圓E上一點且滿足=+,證明·為定值,并求出該值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知左焦點為F(-1,0)的橢圓過點E(1,).過點P(1,1)分別作斜率為k1,k2的橢圓的動弦AB,CD,設M,N分別為線段AB,CD的中點.
(1)求橢圓的標準方程;
(2)若P為線段AB的中點,求k1;
(3)若k1+k2=1,求證直線MN恒過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知直線y=-2上有一個動點Q,過點Q作直線l1垂直于x軸,動點P在l1上,且滿足OP⊥OQ(O為坐標原點),記點P的軌跡為C.
(1)求曲線C的方程.
(2)若直線l2是曲線C的一條切線,當點(0,2)到直線l2的距離最短時,求直線l2的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com