定義在[-1,1]上的奇函數(shù)滿足,且當時,有
(1)試問函數(shù)f(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直,若存在,求出A,B兩點的坐標;若不存在,請說明理由并加以證明.
(2)若對所有,恒成立,
求實數(shù)m的取值范圍.

(1)根據(jù)函數(shù)單調性的定義,設變量作差變形定號下結論。
(2)實數(shù)m的取值范圍是

解析試題分析:解:(1)假設函數(shù)的圖象上存在兩個滿足條件的點A,B,則它們的縱坐標相同
任取,且, 則

  4分
因為,
所以,
是[-1,1]上的增函數(shù)  6分
這與假設矛盾,所以假設不成立,
∴ 函數(shù)f(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直  8分
(2)要使得對所有,恒成立,
只須,  11分
由(1)得是[-1,1]上的增函數(shù) ∴
對任意的恒成立  3分
,則只須,
解之得:   15分
∴實數(shù)m的取值范圍是.  16分
考點:函數(shù)的奇偶性和單調性
點評:解決的關鍵是利用單調性的定義證明,同事利用不等式恒成立來化簡為分離參數(shù)的思想來求解最值得到參數(shù)的范圍。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

函數(shù) 
(1)畫出函數(shù)的圖象;
(2)若不等式 恒成立,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


已知函數(shù)時都取得極值.
(1)求的值與函數(shù)的單調區(qū)間
(2)若對,不等式恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若為定義域上的單調增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)當時,求函數(shù)的最大值;
(Ⅲ)當時,且,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若是偶函數(shù),在定義域上恒成立,求實數(shù)的取值范圍;
(2)當時,令,問是否存在實數(shù),使上是減函數(shù),在上是增函數(shù)?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)若函數(shù)處的切線方程為,求實數(shù)的值;
(2)若在其定義域內單調遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)討論的奇偶性;
(2)當時,求的單調區(qū)間;
(3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,(1)分別求;(2)然后歸納猜想一般性結論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)已知,求證:;
(2)已知,>0(i=1,2,3,…,3n),求證:
+++…+

查看答案和解析>>

同步練習冊答案