【題目】已知函數(shù)f(x)=(x+1)ln(x+1),g(x)=kxex(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),g′(x)為g(x)的導函數(shù),且g′(0)=1,
(1)求k的值;
(2)對任意x>0,證明:f(x)<g(x);
(3)若對所有的x≥0,都有f(x)≥ax成立,求實數(shù)a的取值范圍。

【答案】解:(1)g'(x)=k(x+1)ex所以g'(0)=k=1
(2)證明:令G(x)=ex﹣x﹣1,G′(x)=ex﹣1,當x∈(0,+∞),G′(x)>0,
所以當x∈(0,+∞)時G(x)單調(diào)遞增,從而有G(x)>G(0)=0,x>0;
所以ex>x+1>0x>ln(x+1)>0,
∴xex>(x+1)ln(x+1),
所以當x∈(0,+∞),f(x)<g(x);
(3)令h(x)=(x+1)ln(x+1)﹣ax,
則h′(x)=1﹣a+ln(x+1),令h′(x)=0,解得x=ea﹣1﹣1,
(i)當a≤1時,所以x=ea﹣1﹣1<0,從而對所有x>0,h′(x)>0;h(x)在[0,+∞)上是增函數(shù).
故有x>0,h(x)>h(0)=0
即當a≤1時,對于所有x≥0,都有f(x)≥ax.
(ii)當a>1時,對于0<x<ea﹣1﹣1,h′(x)<0,所以h(x)在(0,ea﹣1﹣1)上是減函數(shù),所以對于0<x<ea﹣1﹣1有h(x)<h(0)=0,
即f(x)<ax,
所以,當a>1,不是所有的x≥0都有f(x)≥ax成立,
綜上,a的取值范圍是(﹣∞,1]
【解析】(1)先求導,再代入值計算即可;
(2)構(gòu)造函數(shù)G(x),根據(jù)函數(shù)的單調(diào)性,即可證明;
(3)構(gòu)造函數(shù)令h(x)=(x+1)ln(x+1)﹣ax,求導,再分類討論,即可求出a的取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若定義域為R的函數(shù)f(x)在(4,+∞)上為減函數(shù),且f(4+x)=f(4﹣x),對任意實數(shù)x都成立,則(
A.f(2)>f(3)
B.f(2)>f(5)
C.f(3)>f(5)
D.f(3)>f(6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列給出的輸入輸出語句正確的是 (  )

①輸入語句INPUTa,b,c,d,e

②輸入語句INPUT x=1

③輸出語句PRINT A=4

④輸出語句PRINT10,3*2,2/3

A. ①② B. ②③

C. ③④ D. ①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是( 。
A.﹣3∈A
B.3B
C.A∪B=B
D.A∩B=B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)a=log37,b=21.1 , c=0.83.1 , 則(
A.b<a<c
B.c<a<b
C.c<b<a
D.a<c<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當﹣3≤x<﹣1時,f(x)=﹣(x+2)2 , 當﹣1≤x<3時,f(x)=x.則f(1)+f(2)+…+f(2015)=(
A.333
B.336
C.1678
D.2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若實數(shù)a,b,c滿足|a﹣c|<|b|,則下列不等式中成立的是(
A.|a|>|b|﹣|c|
B.|a|<|b|+|c|
C.a>c﹣b
D.a<b+c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知m,n表示兩條不同直線,α表示平面,下列說法正確的是(
A.若m∥α,n∥α,則m∥n
B.若m⊥α,nα,則m⊥n
C.若m⊥α,m⊥n,則n∥α
D.若m∥α,m⊥n,則n⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若U={1,2,3,4},M={1,2},N={2,3},則U(M∪N)=(
A.{1,2,3}
B.{2}
C.{1,2,3}
D.{4}

查看答案和解析>>

同步練習冊答案