【題目】如圖數(shù)表:
每一行都是首項為1的等差數(shù)列,第行的公差為,且每一列也是等差數(shù)列,設(shè)第行的第項為.
(1)證明:成等差數(shù)列,并用表示();
(2)當時,將數(shù)列分組如下:(),(),(),…(每組數(shù)的個數(shù)構(gòu)成等差數(shù)列). 設(shè)前組中所有數(shù)之和為,求數(shù)列的前項和;
(3)在(2)的條件下,設(shè)是不超過20的正整數(shù),當時,求使得不等式恒成立的所有的值.
【答案】(1)見解析,(2)(3)
【解析】
(1)根據(jù)前三行成等差數(shù)列得,根據(jù)最后一列成等差數(shù)列可得,把在第行和第列分別表示出來,可得出關(guān)于的表達式;
(2)根據(jù)分組的特點結(jié)合等差數(shù)列前和公式計算,利用錯位相減法計算;
(3)把代入不等式,得,引入函數(shù),由函數(shù)的單調(diào)性可求得使不等式成立的的最小值即可得的取值.
解:(1) 由題意,,且,
得,即
所以成等差數(shù)列
由且
即
化簡得
(2) 當時,
按數(shù)列分組規(guī)律,第組中有個奇數(shù),
所以第1組到第組共有個奇數(shù).
則前個奇數(shù)的和為,
即,
從而 ,
,①則
,②
①-②得,
∴.
(3) 由得.
令,
當時,都有,即,
而,
且當時,
,即單調(diào)遞增,故有.
所以,滿足條件的所有正整數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果一個四面體的三個面是直角三角形,下列三角形:(1)直角三角形;(2)銳角三角形;(3)鈍角三角形;(4)等腰三角形;(5)等腰直角三角形.那么可能成為這個四面體的第四個面是_____.(填上你認為正確的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{2n﹣1}的前n項1,3,7,…,2n﹣1組成集合(n∈N*),從集合An中任取k(k=1,2,3,…,n)個數(shù),其所有可能的k個數(shù)的乘積的和為Tk(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+…+Tn,例如當n=1時,A1={1},T1=1,S1=1;當n=2時,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7,試寫出Sn=__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四面體中,在平面內(nèi),點在線段上,,是平面的垂線,在該四面體繞旋轉(zhuǎn)的過程中,直線與所成角為,則的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域是,且,,當時,.
(1)判斷的奇偶性,并說明理由;
(2)求在區(qū)間上的解析式;
(3)是否存在整數(shù),使得當時,不等式有解?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》全稱《新編直指算法統(tǒng)宗》,是屮國古代數(shù)學(xué)名著,程大位著.書中有如下問題:“今有五人均銀四十兩,甲得十兩四錢,戊得五兩六錢.問:次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分10兩4錢,戊分5兩6錢,且相鄰兩項差相等,則乙丙丁各分幾兩幾錢?(注:1兩等于10錢)( )
A.乙分8兩,丙分8兩,丁分8兩B.乙分8兩2錢,丙分8兩,丁分7兩8錢
C.乙分9兩2錢,丙分8兩,丁分6兩8錢D.乙分9兩,丙分8兩,丁分7兩
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為F,短軸的兩個端點分別為A、B,且,為等邊三角形.
(1)求橢圓C的方程;
(2)如圖,點M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標原點O的對稱點為N;過點M作x軸的垂線,垂足為H,直線與橢圓C交于另一點J,若,試求以線段為直徑的圓的方程;
(3)已知是過點A的兩條互相垂直的直線,直線與圓相交于兩點,直線與橢圓C交于另一點R;求面積取最大值時,直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率,若橢圓的左、右焦點分別為,,橢圓上一動點和,組成的面積最大為.
(1)求橢圓的方程;
(2)若存在直線:和橢圓相交于不同的兩點,,且原點與,連線的斜率之和滿足:.求直線的斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com