我們可以運用下面的原理解決一些相關圖形的面積問題:如果與一固定直線平行的直線被甲、乙兩個封閉圖形所截得線段的比為定值,那么甲的面積是乙的面積的倍,你可以從給出的簡單圖形①(甲:大矩形、乙:小矩形)、②(甲:大直角三角形乙:小直角三角形)中體會這個原理,現(xiàn)在圖③中的曲線分別是,運用上面的原理,圖③中橢圓的面積為                
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題


要制作一個由同底圓錐和圓柱組成的儲油罐(如圖),設計要求:圓錐和圓柱的總高度和圓柱底面半徑相等,都為米.市場上,圓柱側面用料單價為每平方米元,圓錐側面用料單價分別是圓柱側面用料單價和圓柱底面用料單價的4倍和2倍.設圓錐母線和底面所成角為(弧度),總費用為(元).
(1)寫出的取值范圍;(2)將表示成的函數(shù)關系式;
(3)當為何值時,總費用最小?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知兩定點,平面上動點滿足
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點的直線交于兩點,且,當時,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的對稱中心為原點O,焦點在軸上,離心率為,且點(1,)在該橢圓上.
(I)求橢圓的方程;
(II)過橢圓的左焦點的直線與橢圓相交于兩點,若的面積為,求圓心在原點O且與直線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中是對應的焦點。A1,A2和B1,B2是“果圓”與x,y軸的交點,M是線段A1A2的中點.
(1) 若三角形是底邊F1F2長為6,腰長為5的等腰三角形,求“果圓”的方程;
(2)若“果圓”方程為:過F0的直線l交“果圓”于y軸右邊的Q,N點,求△OQN的面積S△OQN的取值范圍
(3) 若是“果圓”上任意一點,求取得最小值時點的橫坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設點是曲線上的點,又點,下列結
論正確的是                                              (   )
A..B..
C..D..

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的離心率為,該橢圓上一點到兩焦點的距離之和為12,則a=             ,b=              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的焦點為,過F2垂直于x軸的直線交橢圓于一點P,那么|PF1|的值是     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題


Suppose  the  least distance fron poinrs of the xurve(曲線)to the y-axis is then the velue of a is
A.B.C.orD.or

查看答案和解析>>

同步練習冊答案